

Gracie 12 Supplementary Study Material

(3)

(4)

(4)

(5)

(3)

(3) [22]

(2)

DoE/November 2009(1) QUESTION 1 Solve for x: x(x-1) = 301.1.1 1.1.2 $3x^2 - 5x + 1 = 0$ (Correct to ONE decimal place) $15x - 4 < 9x^2$ 1.1.3 Solve simultaneously for x and y in the following set of equations: 1.2 x-y=3 $x^2 - xy - 2y^2 - 7 = 0$ Calculate the exact value of: 1.3 (Show ALL calculations.) 1.4 Simplify completely without the use of a calculator: $(1+\sqrt{2x^2})^2-\sqrt{8x^2}$ **QUESTION 2** Tebogo and Matthew's teacher has asked that they use their own rule to construct a sequence of numbers, starting with 5. The sequences that they have constructed are given below. 5; 9; 13; 17; 21; ... 5; 125; 3125; 78125; 1953125; ... Matthew's sequence: Tebogo's sequence: Write down the n^{th} term (or the rule in terms of n) of: 2.1.1 Matthew's sequence 2.1.2 Tebogo's sequence Nomsa generates a sequence which is both arithmetic and geometric. The first term is 1. She claims that there is only one such sequence. Is that correct? Show ALL your workings to justify your answer. Copyright reserved

Mathematics/P1

5 NSC DoE/November 2009(1)

QUESTION 6

Sketched below are the graphs of $f(x) = \frac{1}{2}x^2$ and $g(x) = -\frac{1}{x+1} + 1$. P and Q are the points of intersection of f and g.

- Show that the coordinates of P and Q are P(-2; 2) and $Q(1; \frac{1}{2})$ respectively.
- 6.2 An axis of symmetry of the graph of g is a straight line defined as y = mx + c, where m > 0. Write down the equation of this straight line in the form y = h(x) = ... (2)
- 6.3 Determine the equation of h^{-1} in the form y = ... (2)
- Show algebraically that $g(x) + g\left(\frac{1}{x}\right) = g(-x) \cdot g(x-1)$. $(x \neq 0 \text{ or } x \neq 1)$ [13]

Copyright reserved

Please turn over

(6)

Mathematics/P1

4 NSC DoE/November 2009(1)

QUESTION 3

Given: $\sum_{t=0}^{8} (3t - 1)$

3.1 Write down the first THREE terms of the series.

(1)

3.2 Calculate the sum of the series.

(4) [5]

(3)

(2)

(2) [11]

(2)

(3)

QUESTION 4

The following sequence of numbers forms a quadratic sequence:

- 4.1 The first differences of the above sequence also form a sequence. Determine an expression for the general term of the first differences.
 - Calculate the first difference between the 35th and 36th terms of the quadratic
- 4.2 Calculate the first difference between the 35th and 36th terms of the quadratic sequence.
- 4.3 Determine an expression for the n^{th} term of the quadratic sequence. (4)
- 4.4 Explain why the sequence of numbers will never contain a positive term.

QUESTION 5

Data regarding the growth of a certain tree has shown that the tree grows to a height of 150 cm after one year. The data further reveals that during the next year, the height increases by 18 cm. In each successive year, the height increases by $\frac{8}{9}$ of the previous year's increase in height. The table below is a summary of the growth of the tree up to the end of the fourth year.

	First year	Second year	Third year	Fourth year
Tree height (cm)	150	168	184	$198\frac{2}{9}$
Growth (cm)		18	16	$14\frac{2}{9}$

5.1 Determine the increase in the height of the tree during the seventeenth year.

Calculate the height of the tree after 10 years.

5.2 Calculate the height of the tree after 10 years.5.3 Show that the tree will never reach a height of n

Show that the tree will never reach a height of more than 312 cm. (3)

Copyright reserved

Please turn over

Mathematics/P1

6

DoE/November 2009(1)

QUESTION 7

The graphs of $f(x) = 3\cos x$ and $g(x) = \sin(x - 60^\circ)$ are sketched below for $x \in [-180^\circ; 90^\circ]$.

7.1 Write down the range of f.

7.2 If $A(-97,37^{\circ}; -0,38)$, write down the coordinates of B. (3)

7.3 Write down the period of g(3x). (2)

7.4 Write down a value of x for which g(x) - f(x) is a maximum. (2) [8]

Copyright reserved

Please turn over

(1)

Mathematics/P1

NSC

DoE/November 2009(1)

OUESTION 8

Sketched below is the graph of $f(x) = -\log_2 x$.

8.1 Write down the domain of f.

Write down the equation of f^{-1} in the form y = ...8.2

8.3

(1) Write down the equation of the asymptote of f^{-1} .

Explain how, using the graph of f, you would sketch the graphs of:

 $g(x) = \log_2 x$ 8.4.1 (1)

8.4.2 $h(x) = 2^{-x} - 5$ (3)

Use the graph of f to solve for x where $\log_2 x < 3$.

Mathematics/P1

DoE/November 2009(1)

QUESTION 11

Given: $f(x) = -x^3 + x^2 + 8x - 12$

11.1 Calculate the x-intercepts of the graph of f. (5)

Calculate the coordinates of the turning points of the graph of f. (5)

Sketch the graph of f, showing clearly all the intercepts with the axes and turning 11.3 (3)

Write down the x-coordinate of the point of inflection of f. 11.4 (2)

Write down the coordinates of the turning points of h(x) = f(x) - 3. [17]

QUESTION 12

A tourist travels in a car over a mountainous pass during his trip. The height above sea level of the car, after t minutes, is given as $s(t) = 5t^3 - 65t^2 + 200t + 100$ metres. The journey lasts 8 minutes.

12.1 How high is the car above sea level when it starts its journey on the mountainous pass?

12.2 Calculate the car's rate of change of height above sea level with respect to time,

4 minutes after starting the journey on the mountainous pass. 12.3 Interpret your answer to QUESTION 12.2.

12.4 How many minutes after the journey has started will the rate of change of height with respect to time be a minimum?

(3)[10]

(2)

(3)

(2)

Copyright reserved

8.4

Please turn over

(1)

(1)

(3)

[10]

(4)

(3)

(4)

(1) [16]

Copyright reserved

Please turn over

Mathematics/P1

8 NSC

DoE/November 2009(1)

QUESTION 9

A photocopier valued at R24 000 depreciates at a rate of 18% p.a. on the reducingbalance method. After how many years will its value be R15 000?

A car that costs R130 000 is advertised in the following way: No deposit necessary and first payment due three months after date of purchase.' The interest rate quoted is 18% p.a. compounded monthly.

9.2.1 Calculate the amount owing two months after the purchase date, which is one month before the first monthly payment is due

9.2.2 Herschel bought this car on 1 March 2009 and made his first payment on 1 June 2009. Thereafter he made another 53 equal payments on the first day of each month.

> (a) Calculate his monthly repayments. (3)

> (b) Calculate the total of all Herschel's repayments. (1)

Hashim also bought a car for R130 000. He also took out a loan for 9.2.3 R130 000, at an interest rate of 18% p.a. compounded monthly. He also made 54 equal payments. However, he started payments one month after the purchase of the car. Calculate the total of all Hashim's repayments.

Calculate the difference between Herschel's and Hashim's total 9.2.4 repayments.

QUESTION 10

Differentiate f(x) from first principles if $f(x) = -2x^2 + 3$. 10.1 (5)

Evaluate: $\frac{dy}{dx}$ if $y = x^2 - \frac{1}{2x^3}$ (2) [7] Mathematics/P1

DoE/November 2009(1)

A steel manufacturer makes two kinds of products, product A and B, having parts that must be cut, assembled and finished. The manufacturer is aware that it can sell as many products as it

Let x and y be the number of units of product A and product B that are manufactured every day respectively.

The constraints that govern the manufacture of the products are represented below and the feasible region is shaded.

Write down the constraints in terms of x and y that represent the above information. 13.1

If product A yields a profit of R30 per item and product B yields R40 per item, write 13.2 down the equation indicating the daily profit in terms of x and y.

Determine the number of units of product A and product B that the manufacturer needs to produce in order to maximise his daily profit. A diagram is provided on DIAGRAM SHEET 1.

The manufacturer would like the maximum profit to be at (6; 2) for the profit equation P = mx + c. Determine the values of m which will satisfy this condition [13]

TOTAL: 150

(7)

(2)

(2)

Copyright reserved

Mathematics/P1

DoE/November 2009(1)

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$\sum_{i=1}^n 1 = n \qquad \qquad \sum_{i=1}^n i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^n (a+(i-1)d) = \frac{n}{2}(2a+(n-1)d)$$

$$\sum_{i=1}^n ar^{i-1} = \frac{a(r^n - 1)}{r - 1} \qquad ; \quad r \neq 1 \qquad \sum_{i=1}^n ar^{i-2} = \frac{a}{1-r} \; ; \; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \qquad \mathsf{M}\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$\mathsf{M}\bigg(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\bigg)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$\frac{y_2 - y_1}{x_2 - x_1}$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$ $(x - a)^2 + (y - b)^2 = r^2$

In AABC:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc, \cos a$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$
 area $\triangle ABC = \frac{1}{2}ab \cdot \sin C$

 $\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha.\cos\beta - \sin\alpha.\sin\beta$$

$$\cos^2 \alpha - \sin^2 \alpha$$

$$\cos 2\alpha = \begin{cases} 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$\bar{x} = \frac{\sum_{n=1}^{\infty} n}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \ or \ B) = P(A) - P(B) - P(A \ and \ B)$$

$$\hat{y}=a+bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

Copyright reserved

Memorandum

2 NSC – Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.

If a candidate does a question twice and does not delete either, mark the FIRST attempt.

If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 1

Mathematics/P1

1.1.1	x(x-1) = 30	7	
	$x^2 - x = 30$	If implied as equation : No penalty	√ simplification
	$x^2 - x - 30 = 0$	If there is no equals sign or the equation is not	(multiplying out
	(x-6)(x+5)=0	= 0: No penalty	brackets)
	x = 6 or x = -5	If $x = 6$ is answer by inspection: $1/3$	✓ factors
	x - 0 01 x - 3	Both correct answers no calculation: 1/3	✓ both answers
	The second secon		(3
	OR		
	x(x-1) = 30		√ simplification
	$x^2 - x = 30$		(multiplying out brackets)
	$x^2 - x - 30 = 0$		brackets)
	-(-1)+.	$\sqrt{(-1)^2 - 4(1)(-30)}$	
	$x = \frac{\sqrt{-1/-\sqrt{1-\sqrt{1-1}}}}{\sqrt{1-1}}$	2(1)	✓ substitution into formula
	1+2/121		Tormula
	$=\frac{12\sqrt{127}}{2}$	$\frac{\sqrt{(-1)^2 - 4(1)(-30)}}{2(1)}$	
	$=\frac{1\pm 11}{2}$		
			✓ both answers (ca)
	x = 6 or x = -5		(3
1.1.2	$3x^2 - 5x + 1 = 0$		
1.1.2	a = 3 $b = -5$ $c = 1$	NOTE: Penalty 1 for incorrect rounding off in	
	$-(-5) \pm \sqrt{25-4(3)}$		
	$x = \frac{-(-5) \pm \sqrt{25 - 4(3)}}{2(3)}$	Using calculator incorrectly: Max: 2/4	✓ substitution into correct formula
	$=\frac{5\pm\sqrt{13}}{6}$	Answers will be $x = 5,6$ or $4,4$	correct formula
	= 6	Incorrect formula: max 1 / 4	
	x = 1,4 or $x = 0,2$	7.4	✓ √13
		If $x = \frac{5 \pm \sqrt{37}}{6}$ then CA applies	✓✓ values of x
		x = 1.8 and -0.2 : Max 3 / 4	(CA with formula)
		Correct answer only; 2 / 4	(4
			(-
	OR	If factorising: 0 / 4	
		If $x = \frac{5 \pm \sqrt{13}}{6}$ only, then 2/4	
		$11 x = \frac{1}{6} \text{ only, then } 2/4$	
		If $x = 5 \pm \frac{\sqrt{13}}{6}$ only, then 1/4	
		If $x = 5 \pm \frac{1}{4}$ only, then $1/4$	

Copyright reserved

Please turn over

Mathematics/P1

DoE/November 2009(1)

CENTRE NUMBER:

EXAMINATION NUMBER:

DIAGRAM SHEET 1

QUESTION 13.3

Copyright reserved

Mathematics/P1

DoE/November 2009(1)

NSC - Memorandum

Consistent Accuracy will apply as a general rule.

If a candidate does a question twice and does not delete either, mark the FIRST attempt.

If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

	$3x^2 - 5x + 1 = 0$	
1.1.2 contd	$x^2 - \frac{5}{2}x = -\frac{1}{2}$	
	$x^2 - \frac{5}{3}x + \frac{25}{36} = -\frac{1}{3} + \frac{25}{36}$	
	And the second of the second o	✓ correct method of
	$\left(x-\frac{5}{6}\right)^2 = \frac{13}{36}$	completing the
	$x - \frac{5}{6} = \frac{\pm\sqrt{13}}{6}$	
	$x = \frac{6 \pm \sqrt{13}}{6}$	✓ √13
	$x = \frac{1}{6}$ x = 1.4 or $x = 0.2$	✓✓ values of x
	x = 1.4 or $x = 0.2$	(CA with formula) (4
1.1.3	$-9x^2 + 15x - 4 < 0$	
	$9x^2 - 15x + 4 > 0$	✓ factors
	(3x-4)(3x-1) > 0	✓ correct inequality sign
	+ 0 - 0 + OR	_
	$\frac{1}{3}$ $\frac{4}{3}$ $\frac{1}{3}$ $\frac{4}{3}$	
	$x < \frac{1}{2}$ or $x > \frac{4}{2}$	$\sqrt{\frac{1}{3}}$; $\frac{4}{3}$
	Answer can be given as: $x \in \left(-\infty; \frac{1}{3}\right) \cup \left(\frac{4}{3}; \infty\right)$	✓ answer (4
	OR	
	$-9x^2 + 15x - 4 < 0$	
	(-3x+4)(3x-1)<0	√ factors
	$x < \frac{1}{3}$ or $x > \frac{4}{3}$	correct inequality
		$\sqrt{\frac{1}{3}}$; $\frac{4}{3}$
	NOTE:	✓ answer
	If stop at factorisation: 2/4	(4
	If incorrect factors: CA applies 3 / 4	
	If answer: $\frac{1}{3} < x < \frac{4}{3}$ then 3 / 4	
	If $x < \frac{1}{3}$ AND $x > \frac{4}{3}$ then 3/4	
opyrigh	11 reserved	Please turn

NSC - Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$v^2 - 7 = 0$	✓ substitution
0	✓ standard form ✓ factors
NOTE: If the equation is changed to a linear equation, then max 2 / 5	✓ both y-values ✓ both x-values (5
There are no penalties for not putting = 0.	✓ substitution ✓ standard form ✓ factors ✓ both x-values ✓ both y-values (5
	✓ convert to indices ✓ common factor ✓ answer
	NOTE: If the equation is changed to a linear equation, then max 2 / 5 There are no penalties for not putting = 0.

Copyright reserved

Please turn over

DoE/November 2009(1)

NSC - Memorandum

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

	$\frac{\sqrt{10^{2007}} \cdot \sqrt{10^2}}{\sqrt{10^{2007} \cdot 10^4} - \sqrt{10^{2007}}}$	✓ convert to indices
	$=\frac{10\sqrt{10^{2007}}}{\sqrt{10^{2007}}(\sqrt{10^4-1})}$	convert to makes
	$=\frac{10}{100-1}$	✓ common factor
	$=\frac{10}{99}$	✓ answer
	OR	N.O.
	Let $x = 2009$ $\frac{\sqrt{10^x}}{\sqrt{10^{x+2}} - \sqrt{10^{x-2}}}$	
	$=\frac{10^{\frac{z}{2}}}{10^{\frac{z}{2}}.10-10^{\frac{z}{2}}.10^{-1}}$	✓ convert to indices
	$=\frac{10^{\frac{2}{2}}}{10^{\frac{2}{2}}(10-10^{-1})}$	✓ common factor
	$=\frac{1}{10-\frac{1}{10}}$	✓ answer
	$=\frac{1}{99}$	
	$=\frac{10}{99}$	
1.4	$(1+\sqrt{2x^2})^2-\sqrt{8x^2}$	✓ expansion /
	$=1+2\sqrt{2x^2}+2x^2-\sqrt{4}.\sqrt{2x^2}$	multiplication $1+2\sqrt{2x^2}+2x^2$
	$=1+2\sqrt{2x^2}+2x^2-2\sqrt{2x^2}$	$\sqrt{8x^2} = 2\sqrt{2x^2}$
	$=1+2x^2$	✓ answer
	OR	✓ expansion /
	$(1+\sqrt{2x^2})^2-\sqrt{8x^2}$	multiplication
	(11 122) 102	$1+\sqrt{8x^2+2x^2}$
	$=1+\sqrt{8x^2+2x^2-\sqrt{8x^2}}$ $=1+2\sqrt{2x^2+2x^2-2\sqrt{2x^2}}$	$1 + \sqrt{8x^2 + 2x^2}$ $\checkmark \sqrt{8x^2} = 2\sqrt{2x^2}$

Copyright reserved

Please turn over

Mathematics/P1

DoE/November 2009(1)

NSC - Memorandum

Consistent Accuracy will apply as a general rule.

If a candidate does a question twice and does not delete either, mark the FIRST attempt.

If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1.3	$10^{1004} \sqrt{10}$	
contd	$10^{1005}\sqrt{10}-10^{1003}\sqrt{10}$	✓ convert to indices
	$=\frac{10^{1004}\sqrt{10}}{\sqrt{10}(10^{1005}-10^{1003})}$	
		✓ common factor
	= 101004	· common factor
	$=\frac{10^{1000}(100-1)}{10^{1000}(100-1)}$	
	$=\frac{10}{99}$	✓ answer
	99	(3)
	OR	
	/ 2000	✓ convert to indices
	$\frac{\sqrt{10^{2009}}}{\sqrt{10^{2009} \cdot 10^2} - \sqrt{10^{2009} \cdot 10^{-2}}}$	
	$=\frac{\sqrt{10^{2009}}}{\sqrt{10^{2009}}(10-10^{-1})}$	✓ common factor
	The state of the s	
	$=\frac{1}{10-\frac{1}{10}}$	✓ answer
	$10 - \frac{10}{10}$	(3
	$=\frac{1}{99}$	
	10	
	$=\frac{10}{99}$	
	OR	
	$\sqrt{10^{2000}}\sqrt{10^9}$	
	$\sqrt{10^{2000} \cdot 10^{11}} - \sqrt{10^{2000} \cdot 10^7}$	✓ convert to indices
	$=\frac{\sqrt{10^{2000}}\sqrt{10^9}}{\sqrt{10^{2000}}\left(\sqrt{10^{11}}-\sqrt{10^7}\right)}$	
	$-\frac{10^{2000}}{\sqrt{10^{2000}}}\left(\sqrt{10^{11}}-\sqrt{10^{7}}\right)$	
	$=\frac{\sqrt{10^9}}{\sqrt{10^{11}}-\sqrt{10^7}}$	✓ common factor
	$=\frac{10\sqrt{10^7}}{100\sqrt{10^7}-\sqrt{10^7}}$	✓ answer
	$=\frac{100\sqrt{10^7}-\sqrt{10^7}}{100\sqrt{10^7}}$	(3
	$-10\sqrt{10^7}$	1
	$=\frac{10\sqrt{10^7}}{\sqrt{10^7}(100-1)}$	
	$=\frac{10}{99}$	
	99	
	OR	

Copyright reserved

Please turn over

DoE/November 2009(1)

NSC - Memorandum

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

contd ✓expansion / $(1+\sqrt{2x^2})^2-\sqrt{8x^2}$ multiplication $=1+2\sqrt{2}x+2x^2-2\sqrt{2}x$ or $=1-2\sqrt{2}x+2x^2+2\sqrt{2}x$ ✓simplification ✓ answer (3) Note: $\sqrt{x^2} = x$ if x > 0 and -x if x < 0✓expansion / $(1+\sqrt{2x^2})^2-\sqrt{8x^2}$ multiplication $= \left(1 + \left(2x^2\right)^{\frac{1}{2}}\right)^2 - 8^{\frac{1}{2}}x$ $1+2.(2x^2)^{\frac{1}{2}}+2x^2$ ✓ simplification ✓ answer $=1+2.(2x^2)^{\frac{1}{2}}+2x^2-8^{\frac{1}{2}}x$ $=1+2.2^{\frac{1}{2}}x+2x^2-8^{\frac{1}{2}}x$ $=1+8^{\frac{1}{2}}x+2x^2-8^{\frac{1}{2}}x$ $=1+2x^2$ Note: $\sqrt{x^2} = x$ if x > 0 and -x if x < 0OR Let $2x^2 = y$ $(1+\sqrt{2x^2})^2-\sqrt{8x^2}$ $= (1+\sqrt{y})^2 - \sqrt{4y}$ $=1+2\sqrt{y}+y-2\sqrt{y}$ =1+y $=1+2x^2$

Copyright reserved

[22]

Mathematics/P1

NSC - Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.

If a candidate does a question twice and does not delete either, mark the FIRST attempt. If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$T_n = 4n + 1$	✓✓✓ Answer	8	
OR	NOTE: If $T_n = 5 + (n-1)(4)$ then full marks	only	(3)
	$\checkmark d = 4$		
=4n+1		✓ substitution	
		✓ answer	/51
T 5(25)*-1		√ r = 25	(3
$I_n = 3(23)$		✓ answer	
			(2
The sequence is $1; 1+d; 1+2d$ and $1; r; r^2; r^3;$	d; 1 + 3d; (AP) (GP)		
1+d=r and $d=r-$	-1	$\checkmark 1+d=r$	
	373	$\checkmark 1 + 2d = r^2$	
	$r^2 = 1 + 2d$		
$1 + 2(r - 1) \equiv r^2$ (1+	$(d)^2 = 1 + 2d$		
		V ==1	
	$\sqrt{d} = 0$		
1			
r = 1	W. 150		
: 4=0	r = 1	✓ reason	(5
	re is 1; 1; 1;		(3
OR		1	
$T_1 = 1$	If:		
Let the sequence be $1; a; b;$	Sequence is 1; 1; 1; 1; 1; 1;	/ Carring um	
Geometric: $r = \frac{a}{b} = \frac{b}{b}$	r=1		
1 4	Therefore only one sequence	$\checkmark a^2 = b$	
	exists.		
		$\checkmark b = 2a - 1$	
	Max 3 / 3	$\checkmark a=1$	
	If the candidate only gives		
	Sequence is 1; 1; 1; 1; 1; 1;	✓b = 1	
	then 2/5		(5
100000	If $ar^{n-1} = a + (n-1)d$ only		
b=1	then 1/5		
Sequence is 1; 1; 1;	2002 (CONTRACTOR CONTRACTOR CONTR	1.1	[10
	OR $T_n = 5 + (n-1)(4)$ $= 4n + 1$ The sequence is $1 : 1 + d : 1 + 2d$ and $1 : r : r^2 : r^3 : \dots$ $\therefore 1 + d = r$ and $d = r - 1$ But $1 + 2d = r^2$ $1 + 2(r - 1) = r^2$ (1+ $1 + 2(r - 1)^2 = 0$ $1 + 2d = 1$	OR $T_n = 5 + (n-1)(4)$ $= 4n + 1$ The sequence is $1 : 1 + d : 1 + 2d : 1 + 3d :$ (AP) $and 1 : r : r^2 : r^3 :$ (GP) $\therefore 1 + d = r$ and $d = r - 1$ But $1 + 2d = r^2$ $r^2 = 1 + 2d$ $1 + 2(r - 1) = r^2$ ($1 + d)^2 = 1 + 2d$ $(r - 1)^2 = 0$ ($r - 1$) $\therefore d = 0$ $\Rightarrow d = 0$	OR $T_n = 5 + (n-1)(4)$ $= 4n+1$ $T_n = 5(25)^{n-1}$ $T_n = 1$ T

Copyright reserved

Please turn over

DoE/November 2009(1)

NSC - Memorandum

 Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt. If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 4

These form a linear pattern $T_n = 1 + (n-1)(-2)$ $= 3 - 2n$ OR $T_n = -2n + 3$ ANSWER ONLY: Full marks Between the 35 th and 36 th terms of the quadratic sec first difference $35^{th} \text{ first difference} = 3 - 2(35)$ $= -67$ OR From the quadratic sequence: $P_{36} = -1158$ and P_{35} 35 th first difference = -1158 - (-1091)	✓ substitutio into $T_n = -2$ ✓ answer	
ANSWER ONLY: Full marks Between the 35^{th} and 36^{th} terms of the quadratic sec first difference 35^{th} first difference = $3 - 2(35)$ = -67 OR From the quadratic sequence: $P_{36} = -1158$ and P_{35}	✓ substitutio into $T_n = -2$ ✓ answer	2n+3
Between the 35 th and 36 th terms of the quadratic sec first difference $35^{th} \text{ first difference} = 3 - 2(35)$ $= -67$ OR From the quadratic sequence: $P_{36} = -1158$ and P_{35}	✓ substitutio into $T_n = -2$ ✓ answer	2n + 3
first difference 35^{th} first difference = $3-2(35)$ = -67 OR From the quadratic sequence: $P_{36} = -1158$ and P_{35}	✓ substitutio into $T_n = -2$ ✓ answer	2n + 3
= -67 OR From the quadratic sequence: $P_{36} = -1158$ and P_{35}	✓ answer	
From the quadratic sequence: $P_{36} = -1158$ and P_{35}		(-,
= -67	$P_{36} = -1091$ $P_{36} = -115$ $P_{35} = -1091$ $P_{36} = -1091$ $P_{36} = -1091$	
		(2)
Second difference of terms is -2 . $P_n = an^2 + bn + c$		
-3+b=1 been worked ou in 4.2 and not re	erm has \checkmark substitutio \checkmark b = 4 \checkmark c = -6	n (4)
$P_n = -n^2 + 4n - 6$		
	and $T_{36} = -2(36) + 3 = -69$, leading to the answer -2 then $1/2$ Second difference of terms is -2 . $P_n = an^2 + bn + c$ $a = -1$. $3a + b = 1$ $b = 4$ $a + b + c = -3$ $c = -6$ If the general to been worked on in 4.2 and not real 4.3 but answer down then $4/4$	Second difference of terms is -2 . $P_n = an^2 + bn + c$ $a = -1$. $3a + b = 1$ $b = 4$ $a + b + c = -3$ $c = -6$ $a = -n^2 + 4n - 6$ If the general term has been worked out correctly in 4.2 and not redone in 4.3 but answer just written down then $4/4$

Copyright reserved

Please turn over

Mathematics/P1

DoE/November 2009(1)

NSC - Memorandum

Consistent Accuracy will apply as a general rule.

If a candidate does a question twice and does not delete either, mark the FIRST attempt.

If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 3

3.1	-1 + 2 + 5 + OR -1 : 2 : 5	✓ all three terms
33.2	$S_{e} = -1 + 2 + 5 + 8 + to 100 terms$ $S_{e} = \frac{n}{2} [2a + (n-1)d]$ $S_{100} = \frac{100}{2} [2(-1) + (100 - 1)(3)]$ $= 50[-2 + 297]$ $= 14 750$ OR $S_{a} = -1 + 2 + 5 + 8 + to 100 terms$ $T_{100} = 3(100) - 4$ $= 296$ $S_{n} = \frac{n}{2} [T_{1} + T_{100}]$ $S_{100} = \frac{100}{2} [-1 + 296]$ $= 50[295]$ $= 14 750$ NOTE: $If S_{n} = -1 + 2 + 5 + 8 + to 99 terms$ $S_{n} = \frac{n}{2} [2a + (n-1)d]$ $S_{99} = \frac{99}{2} [2(-1) + (99 - 1)(3)]$ $= \frac{99}{2} [-2 + 294]$	Answer only: Answer only: $4/4$ Formula $n = 100$ Substitution answer (4) 15 15 16 17 18 19 19 19 19 19 19 19 19 19

Copyright reserved

Please turn over

DoE/November 2009(1)

NSC - Memorandum

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

Second difference of terms is -2. contd $P_n = an^2 + bn + c$ a = -1. $P_0 = -6 = c$ $P_n = -n^2 + bn - 6$ $-3 = -(1)^2 + (1)b - 6$ b = 4 $P_n = -n^2 + 4n - 6$ $P_n = \frac{n-1}{2} \left[2(\text{first first difference}) + (n-2)(\text{second difference}) \right] + P_1$ $P_n = \frac{n-1}{2} [2(1) + (n-2)(-2)] - 3$ $P_n = n-1-(n-2)(n-1)-3$ $P_n = n - 1 - n^2 + 3n - 2 - 3$ $P_n = -n^2 + 4n - 6$ $P_n = (n-1)P_2 - (n-2)P_1 + 2nd$ difference $\frac{(n-1)(n-2)}{2}$ $P_n = (n-1)(-2) - (n-2)(-3) - 2\frac{(n-1)(n-2)}{2}$ $P_n = -2n + 2 + 3n - 6 - n^2 + 3n - 2$ $P_n = -n^2 + 4n - 6$ OR $P_n = \frac{(n-2)(n-3)T_1 - 2(n-1)(n-3)T_2 + (n-2)(n-1)T_3}{2(n-1)(n-3)T_2 + (n-2)(n-1)T_3}$ $P_n = \frac{(n^2 - 5n + 6)(-3) - 2(n^2 - 4n + 3)(-2) + (n^2 - 3n + 2)(-3)}{2}$ 2 $P_n = \frac{-3n^2 + 15n - 18 + 4n^2 - 16n + 12 - 3n^2 + 9n - 6}{2n^2 + 15n - 18 + 4n^2 - 16n + 12 - 3n^2 + 9n - 6}$ $P_n = -n^2 + 4n - 6$ OR

Copyright reserved

NSC - Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.

. If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt contd $P_3 - P_2 = T_2$ $P_4 - P_3 = T_3$ $P_n - P_{n-1} = T_{n-1}$ $P_n - P_1 = T_1 + T_2 + \dots + T_{n-1}$ $P_n - P_1 = \frac{n-1}{2} [2(1) + (n-2)(-2)]$ $P_n - (-3) = (n-1)(3-n)$ $P_n = -n^2 + 4n - 6$ 4.4 Maximum value of T_n is $\frac{4(-1)(-6)-4^2}{4(-1)} = -2$ ✓ max value – 2 The maximum value is negative and hence the sequence can not have any positive terms as the function is maximum valued ✓ explanation (2) OR $-n^2+4n-6$ ✓ max value – 2 $=-(n-2)^2+4-6$ ✓ explanation $=-(n-2)^2-2$ The function has a maximum-value of -2 and therefore the pattern will never have positive values. $T_n = -n^2 + 4n - 6$ $\frac{d}{dn}(T_n) = -2n + 4$ ✓ max value – 2 ✓ explanation 0 = -2n + 4n = 2 $T_2 = -(2)^2 + 4(2) - 6$ The function has a maximum-value of -2 and therefore the pattern will never have positive values. As the sequence decreases from the second term onwards and the second term is negative, the sequence will never have a positive term. (2) $T_n = -n^2 + 4n - 6$ $\frac{d}{dn}(T_n) = -2n + 4$ $\frac{d}{dn}(T_n) < 0$ for n > 2 and $T_2 < 0$ so the sequence decreases and stays negative

Copyright reserved

Please turn over

Mathematics/P1

NSC - Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.

 If a candidate does a question twice and does not delete either, mark the FIRST attempt. If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

6.1	$\frac{1}{2}x^{2} = -\frac{1}{x+1} + 1$ $x^{2}(x+1) = -2 + 2(x+1)$ $x^{3} + x^{2} = -2 + 2x + 2$ $x^{3} + x^{2} - 2x = 0$ $x(x^{2} + x - 2) = 0$ $x(x+2)(x-1) = 0$ $x = 0 \text{or} x = -2 \text{or} x = 1$ $y = 0 \text{or} y = \frac{1}{2}(-2)^{2} \text{or} y = \frac{1}{2}(1)^{2}$ $y = 2 \text{or} y = \frac{1}{2}$ $P(-2; 2)$ $Q\left(1; \frac{1}{2}\right)$	✓ equating ✓ multiplication by LCD ✓ standard form ✓ common factor ✓ factorisation of quadratic ✓ y-answer answer P(-2;2) answer Q(1; 1/2)
	OR $ \frac{1}{2}(-2)^2 = 2 \therefore (-2; 2) \text{ lies on } f(x) = \frac{1}{2}x^2 $ $ -\frac{1}{(-2)+1} + 1 = 2 \therefore (-2; 2) \text{ lies on } g(x) = -\frac{1}{x+1} + 1 $	✓ substitution ✓ substitution
	$\therefore (-2; 2) \text{ is one of the points P, O or Q. From the graph it is P}$ $\frac{1}{2}(1)^2 = \frac{1}{2} \qquad \therefore (-2; 2) \text{ lies on } f(x) = \frac{1}{2}x^2 \therefore \left(1; \frac{1}{2}\right) \text{ is one of the points P, O or Q. From the graph it is Q}$ $-\frac{1}{(1)+1} + 1 = \frac{1}{2} \qquad \therefore \text{ Q lies on } g(x) = -\frac{1}{x+1} + 1$	✓ P lies on f and g ✓ substitution ✓ substitution
	$\therefore \left(1; \frac{1}{2}\right)$ is one of the points P, O or Q. From the graph it is Q	✓ Q lies on f and g
6.2	For $m > 0$, $m = 1$ the equation of the axis of symmetry is $y = x + c$. 1 = (-1) + c	✓ gradient m = 1
	c = 2	$\sqrt{c}=2$

Copyright reserved

Please turn over

Mathematics/P1

NSC - Memorandum

DoE/November 2009(1)

This is awarded 3/3 as

consistent accuracy

The answer for 5.2 as continued accuracy uses n = 10,

= 150 + 112,11 ... = 262,11 cm

Height after 10 years

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempts.

	on 5	150 ar: 150 ± 1	8 = 168							
	Second year: $150 + 18 = 168$ Third year: $168 + \frac{8}{9}(18) = 184$									
	Growth = $18\left(\frac{8}{9}\right)^{n-2}$ after <i>n</i> years								✓ general terms	
17	th year g	rowth is 1	$8\left(\frac{8}{9}\right)^{17-2}$	= 3,08	cm					✓ answer
	Yr 1	Yr 2	Yr3	Yr4	Yr5	Yr6	Yr 7	Yr8	Yr 9	(2)
Н	lt 150	168	184	198,2	210,84	222,07	232,06	240,94	248,83	
Ir	ıc	18	16	14,2	12,64	11,23	9,99	8,88	7,89	
	Yr 10	Yr 11	Yr 12	Yr 13	Yr 14	V- 16	Yr 16	Yr 17		
H			267,62	272,55		Yr 15 280,82	284,28	287,36	-	
	ac 7,01	6.24	5,54	4,93	4,38	3,89	3,46	3,08	-	
= 1 = 2 OI	150 + 10 255,88 c R 18 150 + —	$\frac{\left(\left(\frac{8}{9}\right)^9 - 1\right)}{\frac{8}{9} - 1}$ 05,876814	5	corr	ing to 15 ect, full wer only	marks				formula ✓ answer (3)
5.3 M	= 255,88 cm Max height = 150 + sum to infinity $= 150 + \frac{18}{1 - \frac{8}{9}}$ $= 150 \text{ cm} + 162 \text{ cm}$ $= 312 \text{ cm}$ The tree will never reach a height of more than 312 cm.							✓ statement ✓ substitution into the sum to infinity formula ✓ max height (3)		

Mathematics/P1

15

DoE/November 2009(1)

NSC - Memorandum

· Consistent Accuracy will apply as a general rule. If a candidate does a question twice and does not delete either, mark the FIRST attempt.

If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

The equation of the inverse of h is x = y + 2 \checkmark interchange x and yAnswer only: Full marks $\therefore y = x - 2$ ✓ answer ✓ simplification of $g(x) = -\frac{1}{x+1} + 1 = \frac{-1+x+1}{x+1} = \frac{x}{x+1}$ 6.4 g(x) $LHS = \frac{x}{x+1} + \frac{\frac{}{x}}{\frac{1}{x+1}}$ ✓ simplification of $=\frac{x}{x+1}+\frac{1}{x+1}$ √ simplification of (1-x)x $=\frac{x+1}{x+1}$ =1(3) NOTE: If substitute a value of xand prove it, then 0/3 LHS = RHS √ 2 substitutions RHS = g(-x).g(x-1) $LHS = g(x) + g\left(\frac{1}{x}\right)$ correct. $= \left(-\frac{1}{-x+1} + 1\right) \left(-\frac{1}{x-1+1} + 1\right)$ NOTE: not just $= -\frac{1}{\frac{1}{x}+1}$ $= -\frac{1}{x+1} + 2 - \frac{x}{1+x}$ $= -\frac{1+x}{1+x} + 2$ = -1+2rewriting g(x) again ✓ simplification of LHS √simplification of RHS (3) =1 [13] LHS = RHS

Copyright reserved

NSC - Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.

If a candidate does a question twice and does not delete either, mark the FTRST attempt.

If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 7

7.1	$y \in [-3;3]$			✓ answer	
	OR $-3 \le y \le 3$	NO' Nota	TE: ation incorrect : 0 / 1		(1)
	OR y can be any value f	rom – 3 to 3			
7.2	x-value is 7,37° to t	✓ method ✓ x-value			
	B(82,63°; 0,38)	x-value incorrect ar	y-value incorrect: 2/3 id y-value correct: 1/3 orrect of x and y-value	✓ y-value	(3)
7.3	$Period = \frac{360^{\circ}}{3}$ $= 120^{\circ}$	1.775	OTE: answer only: 2/2	$\checkmark \frac{360^{\circ}}{3}$ $\checkmark \text{ answer}$	(2)
7.4	$x = -180^{\circ}$			✓ ✓ answer	(2) [8]

QUESTION 8

8.1	x > 0		✓ answer	(1)
	$ \mathbf{OR} \\ x \in (0; \infty) $		(1)	
8.2 $y = 2^{-x}$			✓ answer	(1)
	OR $y = \left(\frac{1}{2}\right)^{x}$			
8.3	y = 0		✓ answer	(1)
8.4.1	Reflect the graph of f over the x-axis OR	NOTE: Reflect only: 0 / 1	✓ answer	(1)
	For each point the y-coordinate changes			
8.4.2	Reflect the graph of f over the line $y = x$. Then shift the graph down 5 units		✓✓ answer ✓ answer	(3)

Copyright reserved

Please turn over

Mathematics/P1

17 NSC – Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.
If a candidate does a question twice and does not delete either, mark the FIRST attempt.
If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

8.4.2 contd	OR Sketch the graph of the inverse of Shift the graph of the inverse of f		
	OR Shift the graph 5 units LEFT. Reflect the graph over the line y =	= x.	
8.5	$\log_2 x < 3$ $-\log_2 x > -3$ For $-\log_2 x = -3$ $2^3 = x$ $x = 8$ $f(x) > -3$ $0 \le x \le 8$ or $x \in (0:8)$	NOTE: Notation incorrect: Answer x < 8: 2/3 Answer only correct: 3/3	✓ multiplication by -1 ✓ Notation ✓ critical values (3)

QUESTION 9

Penalise ONCE in question 9 for early rounding off.

9.1	$A = P(1-i)^n$ $15000 = 24000(1-0.18)^n$ $0.625 = (0.82)^n$ $n = \frac{\log 0.625}{\log 0.82}$ $= 2.37 \text{ years}$	NOTE: If subs A and P incorrectly: Answer would be $n = -2,37$ years: $n = 2,37$ years: $2/4$ If subs A and P incorrectly: Answer would be $n = -2,37$ years: $1/4$ Answer $n = 2,4$ years $4/4$ Answer rounded to 3 years and all calculations shown and $n = 2,37$ shown: $4/4$ Answer rounded to 3 years and $n = 2,37$ shown: $3/4$	✓ substitution ✓ simplification ✓ application of logs ✓ answer (4) Incorrect formula: 0/4
9.2.1	$130000 \left(1 + \frac{0.18}{12}\right)^2$ = 130000 (l,015) ² = R 133 929,25	NOTE: - 1 per error for incorrect substitution to a max of 2 marks	✓ substitution ✓ answer (3) Incorrect formula: 0/3

Copyright reserved

Please turn over

NSC - Memorandum

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.

 If a candidate does a question twice and does not delete either, mark the FIRST attempt.

 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

9.2.2(a)	$133929,25 = \frac{x[1 - (1,015)^{-54}]}{0.015}$	$\sqrt{n} = 54$
	$2008,93875 = x[1 - (1,015)^{-34}]$	✓ substitution of 133 929,25
	$x = R \ 3636,36$	✓ answer (3)
	$133929,25\left(1+\frac{0,18}{12}\right)^{54} = \frac{x\left[\left(1+\frac{0,18}{12}\right)^{54}-1\right]}{\frac{0,18}{12}}$ $299255,2087 = 82,29517136x$ $x = R 3636,36$	\checkmark n = 54 \checkmark substitution of 133 929,25 \checkmark answer (3)
	OR $130000 \left(1 + \frac{0.18}{12}\right)^{56} = \frac{x \left[\left(1 + \frac{0.18}{12}\right)^{54} - 1 \right]}{0.18}$	$\sqrt{n} = 54$ $\sqrt{130000} \left(1 + \frac{0.18}{12} \right)^{56}$
	$ \begin{array}{c} 12\\ 299255,2087 = 82,29517136x\\ x = R 3636,36 \end{array} $	$\sqrt{130000} \left(1 + \frac{6.18}{12}\right)$ $\sqrt{\text{answer}}$ (3)
9.2.2(b)	Total = 3636,36 × 54 = R196 363,66	✓answer (1)
9.2.3	$130000 = \frac{x[1 - (1,015)^{-54}]}{0,015}$ $1950 = x[1 - (1,015)^{-54}]$ $x = R 3529,68$	✓ 130 000 ✓ $i = 0.015$ ✓ answer 3529,68
	Total payments = R 3529,68 × 54 = R 190 602,72	✓ answer R 190 602,72
	OK .	

Copyright reserved

Mathematics/P1

DoE/November 2009(1)

NSC - Memorandum

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

9.2.3 contd	$130\ 000 \left(1 + \frac{0.18}{12}\right)^{54} = \frac{x \left[\left(1 + \frac{0.18}{12}\right)^{54} - \frac{x \left[1 + \frac{0.18}{12}\right]^{54}}{0.18}\right]}{\frac{0.18}{12}}$ $290475,5842 = 82,29517136.$ $x = R\ 3529,68$ $x = R\ 3529,68 \times 54$ $= R\ 190\ 602,72$ OR $x \left[1 + \frac{0.18}{12}\right] \left(1 + \frac{0.18}{12}\right) \left[1 + \frac{0.18}{12}\right]$		
	$130000 \left(1 + \frac{0.18}{12}\right)^{55} = \frac{x \left(1 + \frac{0.18}{12}\right) \left[\frac{0.000}{12}\right]}{\frac{0.0000}{12}}$ $290475,5842 = 82,29517136.$ $x = R 3529,68$ $x = R 3529,68 \times 54$ $= R 190 602,72$	2	√ i = 0.015 ✓ answer 3529,68 ✓ answer R 190 602,72 (4)
9.2.4	R196 363,66 – R190 602,72 =R5 760,96		✓ answer (1) [16]

Copyright reserved

NSC - Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 10

10.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{-2(x+h)^2 + 3 - (-2x^2 + 3)}{h}$ $-2x^2 - 4xh - 2h^2 + 3 + 2x^2 - 3$	$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\checkmark -2(x+h)^2 + 3$
	$= \lim_{h \to 0} \frac{-2x^2 - 4xh - 2h^2 + 3 + 2x^2 - 3}{h}$ $= \lim_{h \to 0} \frac{h(-4x - 2h)}{h}$	✓ simplification
	$= \lim_{h \to 0} h$ $= \lim_{h \to 0} (-4x - 2h)$ $= -4x$	✓ simplification
	NOTE: Penalty 1 mark only for incorrect notation (lim missing or = in incorrect place)	✓ answer (5)
	Answer only: 0 / 5	
	Cannot give mark for answer if the answer is incorrect according to the working out, even if the answer is given as $-4x$.	
10.2	$y = x^{2} - \frac{1}{2x^{3}}$ $y = x^{2} - \frac{1}{2}x^{-3}$ $\frac{dy}{dx} = 2x + \frac{3}{2}x^{-4}$ OR $\frac{dy}{dx} = 2x + \frac{3}{2x^{4}}$	$\checkmark 2x$ $\checkmark + \frac{3}{2}x^{-4}$ (2) [7]
	$\frac{dy}{dx} = 2x - (-3)\frac{1}{2}x^{-4}$	

Copyright reserved

Please turn over

22 NSC – Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

Please turn over

Mathematics/P1

NSC - Memorandum

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 11

11.1 $0 = -x^{3} + x^{2} + 8x - 1$ $x^{3} - x^{2} - 8x + 12 = 0$ $(x - 2)(x^{2} + x - 6) =$ $(x - 2)(x - 2)(x + 3)$ $x = 2 \text{ or } x = -3$ $x - \text{intercepts are } (2;$	0 0 = 0 0) and (-3;0)	✓ any one of factors ✓ quadratic factor ✓ linear factors ✓ ✓ x-answers (5
$0 = -x^{3} + x^{2} + 8x - \frac{1}{2}$ $x^{3} - x^{2} - 8x + 12 = 0$ $(x+3)(x^{2} - 4x + 4)$ $(x+3)(x-2)(x-2)$ $x = 2 \text{ or } x = -3$	0 = 0	
OR (2) NOTE: If = 0 is omitted	8	$\checkmark f'(x) = 0$ $\checkmark -3x^2 + 2x + 8 = 0 \text{ o}$ $3x^2 - 2x - 8 = 0$ $\checkmark \text{ factors}$ $\checkmark x\text{-values}$ $\checkmark y\text{-values}$ (3)
		Please tur

Copyright reserved

Please turn over

Copyright reserved

NSC - Memorandum

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 12

12.1	$s(0) = 5(0)^3 - 65(0)^2 + 200$	0(0) + 100	✓ t = 0
	= 100 metres	NOTE: If subs $t = 8$, then answer = 100: $0/2$	Answer only: full marks
12.2	$s(t) = 5t^3 - 65t^2 + 200t + 1$ $s'(t) = 15t^2 - 130t + 200$ $s'(4) = 15(4)^2 - 130(4) + 2$ $= -80 \text{ metres per m}$ NOTE: If used average rate of ch. If subs $t = 4$ into $s(t)$: 0 /	✓ $s'(t) = 15t^2 - 130t + 200$ ✓ substitution $t = 4$ ✓ answer (-80) (3)	
12.3	The height of the car above per minute and the car is to negative rate of change. OR The vertical velocity of the NOTE: Mark this CA even if answer to the car above per minute and the car is to negative per minute and the car above per minute and the car is to negative rate of change.	✓ speed 80 metres per minute ✓ downwards (2)	
12.4	$s'(t) = 15t^2 - 130t + 200$ s''(t) = 30t - 130 130 = 30t t = 4,33 minutes OR		✓ $s''(t) = 30t - 130$ ✓ $s''(t) = 0$ ✓ answer (3)
	$t = \frac{-(-130)}{2(15)}$ t = 4,33 minutes		

Copyright reserved

DoE/November 2009(1)

If a candidate does a question twice and does not delete either, mark the FIRST attempt. If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt. $x + 3y \le 18$ √√ answer ✓✓ answer ✓✓ answer $x + y \le 8$ $2x + y \le 14$ ✓ answer $x, y \ge 0$ (7) NOTE: $6x + 18y \le 108$ If written as equations (inequality $8x + 8y \le 64$ omitted): max 6 / 7 $14x + 7y \le 98$ $x, y \ge 0$ If inequalities sign the wrong way round: max 6 / 7 One should note that x and y should be counting numbers $y \le -x + 8$ $y \le -2x + 14$ $x, y \ge 0$ P = 30x + 40yNOTE: If P = 30A + 40B then 1 / 2 √√ answer (2) $y = -\frac{3}{4}x + \frac{P}{40}$ 13.3 NOTE: Please check diagram ✓✓ answer (2) Answer only: Full marks Number of units of product A Maximum at (3;5) 13.4 -2 < m < -1√√answer NOTE: (2) accept $1 \le m \le 2$: 2/2. If \le signs used then max 1/2[13]

NSC - Memorandum

Mathematics/P1

Copyright Reserved

Consistent Accuracy will apply as a general rule.

Together Educating the Nation

Notes

Notes

Notes

Grade 12 Education Supplement 2010

Mathematics/P2

DoE/November 2009(1)

(2)

(3)

(2)

(3)

QUESTION 1

The data below shows the total monthly rainfall (in millimetres) at Cape Town International Airport for the year 2002.

Jan.		March								Nov.	Dec.
60,9	14,9	9,3	28,0	71,9	76,4	98,2	65.7	26,1	32,5	23,6	15,0

1.1 Determine the mean monthly rainfall for 2002.

1.2 Write down the five-number summary for the data. (5)

1.3 Draw a box and whisker diagram for the data on DIAGRAM SHEET 1.

By making reference to the box and whisker diagram, comment on the spread of the rainfall for the year. 1.4

Calculate the standard deviation for the data.

QUESTION 2

The scatter plot below represents the times taken by the winners of the men's 100 m freestyle swimming event at the Olympic Games from 1972 to 2004. The data was obtained from www.databaseOlympics.com.

2.1 Indicate whether a linear, quadratic or exponential function best fits the data.

(1) 2.2 Draw a line of best fit for the data on the graph provided on DIAGRAM SHEET 1. (2)

Describe the trend that is observed in these times 2.3 (1)

2.4 Give ONE reason for this trend. (1)

What can be said about the efforts of the winners in the years 1976 and 1988? 2.5 (2)

Use your line of best fit to predict the winning time for 2008.

Copyright reserved

Please turn over

(1)

Mathematics/P2

DoE/November 2009(1)

QUESTION 4

ABC is a triangle with vertices A(1; 3), B(t; 0) and C(p; -4), with p > 0, in a Cartesian plane. AB makes an angle of 45° with the positive x-axis. AC = $\sqrt{50}$.

4.1 Determine the gradient of AB.

(2) (2)

4.2 Calculate the value of t.

(4)

4.3 Calculate p, the x-coordinate of point C. Hence, determine the midpoint of BC.

(2)

Determine the equation of the line parallel to AB, passing through point C. 4.5

6 NSC

A(-8;2), B(-2;-6) and D(0;8) are the vertices of a triangle that lies on the circumference of a circle with diameter BD and centre M, as shown in the figure below.

D(0;8)

[13]

Copyright reserved

Mathematics/P2

QUESTION 5

4.4

Please turn over

DoE/November 2009(1)

Mathematics/P2

DoE/November 2009(1)

QUESTION 3

The ogive (cumulative frequency graph) shows the performance of students who took a test in basic programming skills. The test had a maximum of 100 marks.

Performance in Computer Programming test

3.1 How many students took the test? (1)

Only the top 25% of the students are allowed to do an advanced course in 3.2 programming. Determine the cut-off mark to determine the top 25%. Construct a frequency table for the information given in the ogive on DIAGRAM SHEET 2. Complete the table with the information.

(3)

(1)

5.1 Calculate the coordinates of M. Show that (-8; 2) lies on the line y = 7x + 58. 5.2

A(-8;2)

(2)

5.3 What is the relationship between the line y = 7x + 58 and the circle centred at M?

(1)

Calculate the lengths of AD and AB. 5.4

Motivate your answer.

(4)

(5)

(3)

(1)

5.5 Prove $D\hat{A}B = 90^{\circ}$. 5.6 Write down the size of angle θ .

at N, M and T respectively. Given that BMZN is a kite, calculate the radius of this circle. A diagram is provided on DIAGRAM SHEET 2.

A circle, centred at a point Z inside AABD, is drawn to touch sides AB, BD and DA

[22]

Copyright reserved

Please turn over

Copyright reserved

3.3

Mathematics/P2

DoE/November 2009(1)

(2)

(2)

(3)

(2)

(2)

[11]

OUESTION 6

- ABC is a triangle that has an area of 5 square units. $\Delta A'B'C'$ is an enlargement of \triangle ABC through the origin by a scale of 2.
 - 6.1.1 Determine the area of $\Delta A' B' C'$.
 - Write down the general rule for the transformation from ΔABC to 6.1.2 $\Delta A'B'C'$.
 - The vertices of ΔABC are A(-1 ; 4), B(-1 ; 2) and C(4 ; 4). Use the grid provided on DIAGRAM SHEET 3 to draw $\Delta A'B'C'$. 6.1.3
 - 6.1.4 Comment on the rigidity of the transformation from $\triangle ABC$ to $\triangle A'B'C'$. (2)
- A quadrilateral EFGH is transformed to its image $E^{III}F^{III}G^{III}H^{III}$ in the following way: 6.2
 - - First, reflect EFGH about the line y = x. Then, rotate this image through 90° in a clockwise direction about the origin.
 - The second image has a translation of 2 units to the left and 3 units down to obtain E^MF^MG^MH^M.

Write down the general rule of the transformation of EFGH to $E^{\prime\prime\prime}F^{\prime\prime\prime}G^{\prime\prime\prime}H^{\prime\prime\prime\prime}$. (6) [**15**]

QUESTION 7

A' $(-1-\sqrt{2}; 1-\sqrt{2})$ is the image of point A(p; q), after point A has been rotated about the origin in an anti-clockwise direction, through an angle of 135°.

- T(x;y) is rotated about the origin through an angle of θ in an anti-clockwise direction. Write down a formula to determine the coordinates of T, the image of T.
- Write down the coordinates of A' in terms of p, q and 135°. 7.2
- Hence, or otherwise, calculate p and q. (Leave your answer in surd form.) 7.3

Mathematics/P2

9 NSC

DoE/November 2009(1)

QUESTION 11

Two ships, A and B, are 120 km apart. Ship A is at a bearing of 67° from D and 97 km away from D. DN points due north. Ship B is at a bearing of 208° from D. A diagram is provided on DIAGRAM SHEET 3.

- Determine the bearing of Ship A from Ship B, that is MBA, when 11.1.1 BM | DN.
- 11.1.2 If Ship B travels due north, and Ship A travels due south, then at some instant of time Ship A is due east of Ship B.
 - Calculate the distance between the two ships at that instant.
- Triangle ABC is isosceles with AB = BC. 11.2

Prove that $\cos B = 1 - \frac{b^2}{2a^2}$

[13]

(2)

(2)

(3)

(2)

(6)

(3)

Copyright reserved

Please turn over

Copyright reserved

Please turn over

Mathematics/P2

DoE/November 2009(1)

QUESTION 8

Given: $\sin \alpha = \frac{8}{17}$ where $90^{\circ} \le \alpha \le 270^{\circ}$

With the aid of a sketch and without the use of a calculator, calculate:

- 8.1 $\tan \alpha$
- 8.2 $\sin(90^{\circ} + \alpha)$
- 8.3 $\cos 2\alpha$

QUESTION 9

- 9.1 Simplify completely:
 - $\sin(90^{\circ} x)\cos(180^{\circ} x) + \tan x.\cos(-x)\sin(180^{\circ} + x)$
- Prove, without the use of a calculator, that $\frac{\sin 190^{\circ}\cos 225^{\circ}\tan 390^{\circ}}{\cos 225^{\circ}\tan 390^{\circ}} = -\frac{1}{3}$ cos100° sin135°
- 9.3 Determine the general solution of $\sin x + 2\cos^2 x = 1$.

(3)

(2)

[8]

(7)

(7)

(4) [7]

QUESTION 10

Using the expansions for sin(A + B) and cos(A + B), prove the identity of:

$$\frac{\sin(A+B)}{\cos(A+B)} = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$$

(3)

If $tan(A + B) = \frac{sin(A + B)}{cos(A + B)}$, prove in any $\triangle ABC$ that

Mathematics/P2

DoE/November 2009(1)

OUESTION 12

Given: $g(x) = 2\cos(x - 30^{\circ})$

- 12.1 Sketch the graph of g for $x \in [-90^{\circ}; 270^{\circ}]$ on DIAGRAM SHEET 4.
- 12.2 Use the symbols A and B to plot the two points on the graph of g for which $\cos(x - 30^{\circ}) = 0.5$
- 12.3
 - Calculate the x-coordinates of the points A and B.
- 12.4 Write down the values of x, where $x \in [-90^{\circ}; 270^{\circ}]$ and g'(x) = 0.
 - (3) [**12**] Use the graph to solve for x, $x \in [-90^{\circ}; 270^{\circ}]$, where g(x) < 0
 - TOTAL: 150

Copyright reserved

Please turn over

Mathematics/P2

Copyright reserved

Mathematics/P2

SENTRUMNOMMER:

DoE/November 2009(1) Mathematics/P2 INFORMATION SHEET: MATHEMATICS $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ A = P(1 + ni) A = P(1 - ni) $A = P(1 - i)^{\kappa}$ $\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} (a+(i-1)d) = \frac{n}{2} (2a+(n-1)d)$ $\sum_{i=1}^{r} ar^{i-1} = \frac{a(r^{n}-1)}{r-1} \quad ; \qquad r \neq 1 \qquad \qquad \sum_{i=1}^{\infty} ar^{i-1} = \frac{a}{1-r} \quad ; \quad -1 < r < 1$ $F = \frac{x[(1+i)^n - 1]}{i}$ $F = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$ y = mx + c $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$ $(x-a)^2 + (y-b)^2 = r^2$ In AABC: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ $area \Delta ABC = \frac{1}{2}ab. \sin C$ $\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$ $\sin(\alpha + \beta) = \sin\alpha.\cos\beta + \cos\alpha.\sin\beta$ $\cos(\alpha - \beta) = \cos\alpha.\cos\beta + \sin\alpha.\sin\beta$ $\cos(\alpha + \beta) = \cos\alpha.\cos\beta - \sin\alpha.\sin\beta$ $\cos^2 \alpha - \sin^2 \alpha$ $\cos 2\alpha = \left\{1 - 2\sin^2\alpha\right\}$ $\sin 2\alpha = 2\sin \alpha.\cos \alpha$ $2\cos^2\alpha - 1$ $P(A) = \frac{n(A)}{n(S)}$ P(A or B) = P(A) + P(B) - P(A and B) $b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$ $\hat{y} = a + bx$ Copyright reserved

CENTRE NUMBER:

EXAMINATION NUMBER:

DIAGRAM SHEET 2

QUESTION 3.3

QUESTION 5.7

QUESTION 5.7

D(0:8)

DoE/November 2009(1)

DoE/November 2009(1)

Mathematics/P2

NSC

DoE November 2009(1)

CENTRE NUMBER:

EXAMINATION NUMBER:

DIAGRAM SHEET 1

0 10 20 30 40 50 50 70 80 90 10

QUESTION 2.2

QUESTION 1.3

Copyright reserved

EKSAMENNOMMER:

DIAGRAM SHEET 3

QUESTION 6.1.3

QUESTION 11

N
97 km
672

D 2088

NSC

Mathematic Paper 02 November 2009 Exercise

DoE/November 2009(1) Mathematics/P2 SENTRUMNOMMER: EKSAMENNOMMER: DIAGRAM SHEET 4 **QUESTION 12.1** Copyright reserved

Mathematic Paper 02
November 2009
Mathematic Paper 02 November 2009 Exercise

Mathematics/P2

NSC - Memorandum

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.

 If a candidate does a question twice and does not delete either, mark the FIRST attempt. . If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.
- **OUESTION 1**

.1 Mean = $\frac{522.5}{12}$ = 43.5	✓ 522,5 ✓ answer
ANSWER ONLY: Full marks	No penalty for Rounding: Accept 43,54; 44
Ordered Data 9.3 14.9 15 23.6 26.1 28 32.5 60.9 65,7 71,9 76,4 98,2 Median = $\frac{28+32.5}{2}$ = 30,3 Lower quartile = $\frac{15+23.6}{2}$ =19,3 Upper quartile = $\frac{65,7+71.9}{2}$ = 68,8 The five number summary is (9,3; 19,3; 30,25; 68,8; 98,2) OR If they use the formula: Ordered Data 9,3 14,9 15 23,6 26,1 28 32.5 60,9 65,7 71,9 76,4 98,2 $P_{30} = \frac{12+1}{2} = 6.5$ Position of median: $\therefore Q_2 = \frac{28+32.5}{2} = 30.3$ Position of lower quartile: $P_{25} = \frac{13}{4}$ $\therefore Q_1 = 15 + (0,25(23,6-15)) = 17.15$ Position of upper quartile: $P_{75} = 0,75(13) = 9,75$ $\therefore Q_3 = 65,7 + (0,75(71.9 - 65,7)) = 70,35$ Min = 9,3 Max = 98,2 Accept any one of these five number summaries: (9,3; 19,3; 30,3; 68,8; 98,2) (9,3; 15; 30,3; 71.9; 98,2) (9,3; 17,2; 30,3; 70,4; 98,2)	Accept 43,34; 44 ✓ 9,3 ✓ 19,3 ✓ 30,3 ✓ 68,8 ✓ 98,2 (5) If indicated on the box and whisker diagram in 1.3 – 5 marks

Copyright reserved

Mathematics/P2

NSC - Memor

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.

 If a candidate does a question twice and does not delete either, mark the FIRST attempt . If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt

QUESTION 2

Copyright reserved

Please turn over

NSC - Memorandum

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt. If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt
- 1.3 ✓ minimum and maximum values ✓ quartiles and median ✓ whiskers with median line (3) If just a box and whisker without any reference to the numbers: 1/3 The data is skewed to the right (positively skewed). ✓ ✓ comment about This suggests that there was a large difference between the median rainfall. and the maximum rainfall (some months had exceptionally high (2) rainfall in that year). Note: Skewed to right 1/2 Die data is skeef na regs (positief skeef) Dit dui daarop dat daar 'n groot verskil is tussen die mediaan en die maksimum reënval (sommige maande het ongewoon hoë reënval ✓ ✓ verwysing na gehad gedurende die jaar. reënval By using the calculator, $\sigma = 28,19$. (28,19058256) √√√answer Accept: 28; 28,2; OR Pen and Paper method (not recommended) $x - \bar{x}$ $(x-\bar{x})^2$ 60,9 17,36 301,3696 -28,64 820,2496 14,9 1172,378 -34,24 241,4916 28,0 804,2896 71,9 28,36 76,4 32,86 1079,78 2987,716 98,2 54,66 22,16 491,0656 65,7 √headings correct 26,1 -17.44304.1536 ✓ sum of the squares 32,5 -11.04121,8816 of the mean 397,6036 23,6 -19,94deviations -28,54 814.5316 15,0 Sum 9536,509 $\sigma = \sqrt{\frac{9536,509}{12}} = 28,19$ (28,19059....) ✓ answer (3)[15]

NSC - Memora

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt. . If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt
- The scatter plot shows an overall decrease in the time taken by the

 ✓ decrease/afname winner since 1972. Die spreidiagram dui 'n algehele afname in tye aangeteken deur die wenners vanaf 1972. Times are faster. Tye is vinniger. Negative correlation between year and time. Negatiewe korrelasie tussen jaar en tyd. The top athletes of the world have turned professional. This allows them to train at the best facilities and receive the best ✓ any acceptable coaching available. reason relating to the Also, equipment manufacturers are in competition with each other. In this case, manufacturers are designing swimsuits that assist swimmers Swimmers train harder and put in more effort. Die top atlete van die wêreld het professionele atlete geword. Dit √ enige aanvaarbare laat hulle toe om by die beste fasiliteite te oefen en die beste rede wat verband hou afrigting te ontvang. met die neiging. Vervaardigers van voorraad is in kompetisie met mekaar. Hul onwerp dus swembroeke wat die swemmers help. Swemmers oefen harder en gebruik meer tyd om te oefen. √ acceptable reason In the context of the times around these two observations, one can consider the efforts of 1976 and 1988 to be outliers. This shows in context that these athletes were exceptionally good swimmers at the time. (2) kan die poging van 1976 and 1988 gesien word as uitskieters. Dit binne die konteks dui daarop dat hierdie atlete uitstekende swemmers was daardie Winning time of 2008 is expected to be about 47,6 seconds. ✓answer from graph Accept answer from candidate's graph. (1) [8]

QUESTION 3

3.1	50	✓ answer (1)
3.2	Cut-off mark of 56% (37 students)or 58% (38 students) Accept interval: 55% - 60%	✓ answer read off from ogive

Copyright reserved

Please turn over

Copyright reserved

Mathematics/P2

NSC - Memorandum

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

3.3	Marks (out of 100)	Frequency (f)	
	0 ≤ marks <10	1	✓ class intervals
	10 ≤ marks <20	3	Accept 0 - 10; 10 - 20
	20 ≤ marks <30	4	Or 0 < marks ≤ 10
	30 ≤ marks <40	11	Or
	40 ≤ marks <50	12	Between 0 and 10 Or
	50 ≤ marks <60	9	From 0 to 10
	60 ≤ marks <70	5	If the intervals not in
	70 ≤ marks <80	4	tens, the mark for
	80 ≤ marks <90	1	intervals not given
	90 ≤ marks <100	0	✓ method
		·	✓ accuracy of five answers
			(3)

QUESTION 4

4.1	$\tan 45^{\circ} = m_{AB}$ $= 1$	✓ tan 45° ✓ answer	(2)
	OR $m_{AB} = \frac{3 - 0}{1 - t} = \frac{3}{1 - t}$	Answer only: full marks	(2)
4.2	$\frac{3-0}{1-t} = \tan 45^\circ = 1$	√equating	
	1-t=3 $t=-2$ OR $y = mx + c$	✓value	(2)
	3 = (1)(1) + c $c = 2$ $y = x + 2$ $(t; 0) in y = mx + 2$	✓c=2	
	0 = t + 2 $t = -2$	✓value Answer only: full marks	(2)

Copyright reserved

Please turn over

Mathematics/P2

NSC - Memorandum

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.

 If a candidate does a question twice and does not delete either, mark the FIRST attempt.

 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 5

5.1	Midpoint BD $\left(\frac{0-2}{2}, \frac{8-6}{2}\right)$	$\checkmark x$ -coordinate $\checkmark y$ -coordinate (2)
5.2	$= (-1; 1)$ $y = 7(-8) + 58$ $= 2$ $\therefore \text{ A lies on the line.}$	✓ substitution (1) Substitute both at the same time with justification (1)
5.3	The line $y = 7x + 58$ is a tangent to the circle at A. $m_{line} = 7$ $m_{AM} = \frac{2-1}{-8-(-1)} = -\frac{1}{7}$ $m_{line} \times m_{AM} = 7 \times -\frac{1}{7} = -1$ $\therefore AM \perp \text{ to the line}$	✓ relationship ✓ $m_{AM} = \frac{2-1}{-8-(-1)} = -\frac{1}{7}$ ✓ $m_{line} = 7$ ✓ product (5)
	OR	

NOTE: $m_{line} = 7$ and CA gradient of AM then no relationship: 4/5

Copyright reserved

Please turn over

NSC - Memorandum

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.

 If a candidate does a question twice and does not delete either, mark the FIRST attempt.

 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

4.3	$\sqrt{(1-p)^2 + (3+4)^2} = \sqrt{50}$	✓ substitution into distance
	$(1-p)^2 + (3+4)^2 = 50$	formula
	F 1000 00 100	
	$1 - 2p + p^2 + 49 = 50$	✓ expansion
	$p^2 - 2p = 0$	
	p(p-2)=0	✓ factors
	$p \neq 0$ or $p = 2$	✓answer
	(5)	Note: If an answer was not chosen: 3/4
	OR	(4'
		✓ substitution into distance
	$(1-p)^2 + (3+4)^2 = 50$	formula
	$(1-p)^2 = 50 - 49$	The state of the s
	$(1-p)^2 = 1$	
		✓ expansion ✓ factors
	$ 1-p=1 & 1-p=-1 \\ p \neq 0 & p=2 $	✓ answer
	p 7 0 p - 2	(4
	OR	If gradient of BC assumed as -1
	Let $p = 2$	and p calculated correctly: 0/4
	$AC = \sqrt{(1-2)^2 + (3+4)^2}$	Answer only: 1/4
	$=\sqrt{1+49}$	
		✓ substitution into distance
	$=\sqrt{50}$	formula
	which is true	
	$\therefore p=2$	√ √50
		✓ which is true(justification) ✓ answer
		answer (4
		If equating to $\sqrt{50}$ from the
		start, then 3/4
4.4	midpoint of BC = $\left(\frac{-2+2}{2}; \frac{0-4}{2}\right)$	\checkmark x-value $(x = \frac{t+p}{2})$
	2 , 2	2
	midpoint of BC = $(0; -2)$	✓ v-value
		y-value (2
		(2
4.5	Gradient of line = $m_{AB} = 1$	✓ gradients are equal
	Equation of line is: $y + 4 = 1(x - 2)$	\checkmark substitution of $(p;-4)$
	y = x - 6	✓ equation in any form
	OR	(3
	y = mx + c	[13
	y=x-p-4	[IS

Copyright reserved

NSC - Memorandum

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.

 If a candidate does a question twice and does not delete either, mark the FIRST attempt.

 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.3	OR	
contd	$m_{RD} = 7$	$ \checkmark m_{BD} = 7 $
	$m_{line} = 7$	$ \checkmark m_{line} = 7 $
	∴ line // diameter	✓✓ conclusion (5) Note: Only lines parallel 4/5
	OR	
	$(x+1)^2 + (y-1)^2 = 50$	✓ circle equation
	$x^{2} + 2x + 1 + y^{2} - 2y + 1 = 50$ $x^{2} + 2x + 1 + (7x + 58)^{2} - 2(7x + 58) + 1 = 50$	✓ substitution of $y = 7x + 58$
	$x^{2} + 2x + 1 + 49x^{2} + 812x + 3364 - 14x - 116 + 1 = 50$ $50x^{2} + 800x + 3200 = 0$ $x^{2} + 16x + 64 = 0$	✓standard form
	$(x+8)^2=0$	✓ answer
	x = -8	✓ tangent
	y = 2 y = 7x + 58 is a tangent to the circle	(5)
5.4	$AD = \sqrt{(8-2)^2 + (0+8)^2}$	✓ substitution
	$= \sqrt{36 + 64}$ $= 10$	✓ answer
	$AB = \sqrt{(2+6)^2 + (-8+2)^2}$ $= \sqrt{64+36}$	✓ substitution
	= 10	✓ answer
		Note: Answers $\sqrt{10}$ then $3/4$

Mathematics/P2

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.

• If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.5	$m_{AD} = \frac{8 - (2)}{0 - (-8)}$	
	$m_{AD} = \frac{3}{4}$	✓ gradient of AD
	$m_{AB} = \frac{2 - (-6)}{-8 - (-2)}$ $= -\frac{4}{3}$	✓ gradient of AB
	$m_{AB}.m_{AD} = -\frac{4}{3} \times \frac{3}{4}$ $= -1$ $D\hat{A}B = 90^{\circ}$	✓ PRODUCT (3)
	OR BD ² = $(8+6)^2 + (0+2)^2$	✓ distance formula
	$= 200$ $= AD^{2} + AB^{2}$ $\therefore D\hat{A}B = 90^{\circ}$	✓ Pythagoras ✓ conclusion (3)
	OR $a^2 = b^2 + d^2 - 2(b)(d)\cos A$ $200 = 100 + 100 - 2(10)(10)\cos A$ $0 = -200\cos A$ $A = 90^{\circ}$	✓ cos rule ✓ substitution ✓ conclusion (3)
	OR $(AD)^2 = 100$ $(AB)^2 = 100$ $BD^2 = (-2 - 0)^2 + (-6 - 8)^2$ = 4 + 196 = 200 $\therefore BD^2 = AD^2 + AB^2$	$\forall BD^2 = 200$ $\forall BD^2 = AD^2 + AB^2$ $\forall \text{ conclusion}$ (2)
	$\therefore D\hat{A}B = 90^{\circ} \text{(Pyth)}$ \mathbf{OR} $\hat{A} = 90^{\circ} \text{(angles in semi-circle)}$	(3) ✓ ✓✓ reason (3)
5.6	<i>θ</i> = 45°	✓ answer

Copyright reserved

Mathematics/P2

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

 $MB^2 = (-1+2)^2 + (1+6)^2$ contd =1+49**✓**✓MB = 50 $MB = \sqrt{50}$ ✓√tan 22,5° $\frac{ZM}{MB} = \tan 22.5^{\circ}$ $ZM = 7,07 \tan 22,5^{\circ}$ ✓ answer = 2,93(6) OR By a well known formula ✓✓ formula Area $\triangle ABD = r \times (\text{semi-perimeter})$ \checkmark √200 \checkmark ✓ answer $\frac{1}{2} \times 10 \times 10 = r \times \frac{1}{2} (20 + \sqrt{200})$ (6) $50 = r(10 + 5\sqrt{2})$ r = 2,93✓MB ✓NB $MB = \sqrt{50}$ (radius of circle) $NB = \sqrt{50}$ (adjacent sides of kite) AB = 10 $AN = 10 - \sqrt{50}$ \checkmark AN = 2,93

Copyright reserved

Please turn over

(6)

√ square

Mathematics/P2

NSC - Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

B(-2;-6)	
Let the radius of circle TNM be r NB = BM (properties of a kite) AN = TZ = r (TZNA is a square) NB = $10 - r$ BD = $2MB$ $\sqrt{(8-(-6))^2 + (0-(-2))^2} = 2(10-r)$	$ √ NB = BM $ $ √ AN = TZ = r $ $ √ NB = 10 - r $ $ √ BD = 2MB $ $ √ BD = \sqrt{200}$
$\sqrt{200} = 2(10 - r)$ $10\sqrt{2} = 2(10 - r)$ $r = 10 - 5\sqrt{2}$ $= 2,93$ OR	✓answer (6)
$Z\hat{\mathbf{M}}\mathbf{B} = 90^{\circ}$ $\mathbf{MR} = \frac{1}{200}$	✓tan radius theorem
= 7,07	✓✓MB
$ZM = 7.07 \tan 22.5^{\circ}$	✓✓ tan 22,5°
= 2,93 OR	✓answer (6)
	Let the radius of circle TNM be r NB = BM (properties of a kite) AN = TZ = r (TZNA is a square) NB = $10 - r$ BD = 2 MB $\sqrt{(8 - (-6))^2 + (0 - (-2))^2} = 2(10 - r)$ $10\sqrt{2} = 2(10 - r)$ $10\sqrt{2} = 2(10 - r)$ $r = 10 - 5\sqrt{2}$ $= 2,93$ OR $Z\hat{M}B = 90^{\circ}$ $MB = \frac{1}{2}\sqrt{200}$ $= 7,07$ $\frac{ZM}{MB} = \tan 22,5^{\circ}$ $ZM = 7,07 \tan 22,5^{\circ}$ $= 2,93$

Copyright reserved

Please turn over

NSC - Memorandum

DoE/November 2009(1)

= 2,93 But TANZ is a square \therefore AN = ZN

∴ radius = 2,93

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.

• If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt

OUESTION 6

6.1.1	4×5 =20 squared units	$2^2 \times 5$ 1/2 If 2×5 = 10 0/2
6.1.2	$(x; y) \rightarrow (2x; 2y)$ Note: If candidate state: coordinates times two 2/2	$ \begin{array}{l} \checkmark 2x \\ \checkmark 2y \end{array} $ If $(kx; ky):1/2$ $ \begin{array}{l} (2) \\ (3) \\ (4) \\ (7) \\ (7) \\ (8) \\ (9) \\$
6.1.3	(-2;8) (-2;8) (-2;4) (-	If 2(x; y): 2/2 ✓ coordinates A' ✓ coordinates B' ✓ coordinates C' (3) If diagram not drawn but coordinates correctly given: 1/3 If coordinates correctly plotted but not joined: 2/3
6.1.4	Note: Shape remains the same: 1/2 Only the shape remains the same: 2/2	√√ same shape and different size (2 not rigid only 2// just enlarged 0/2 Mark per coordinate √✓ reflection
	Reflection about the line $y = x$: $(x; y) \rightarrow (y; x)$ Rotate clockwise about the origin: $(y; x) \rightarrow (x; -y)$ Translate 2 left and 3 down: $(x; -y) \rightarrow (x-2; -y-3)$ OR	✓✓rotation ✓✓translation
	General rule: $(x; y) \rightarrow (x-2; -y-3)$	Answer only: Full marks

Mathematics/P2

14 NSC – Memora

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.

If a candidate does a question twice and does not delete either, mark the FIRST attempt. . If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt

The first 2 transformations in the given order is the same as the reflection in the x-axis i.e. $(x; y) \rightarrow (x; -y)$ Then the translation gives us

 $(x; y) \to (x; -y) \to (x-2; -y-3)$

NOTE:

If just given: $(x; y) \to (x-2; y-3): 2/6$

If using $(x; y) \rightarrow (y; x) \checkmark \checkmark$ $(x;y) \rightarrow (y;-x) \checkmark$

 $(x;y) \rightarrow (x-2;y-3) \checkmark \text{ throughout :4/6}$

If learner starts with (x; y) and continue to use (x; y) for the second and third transformation 4/6

QUESTION 7

7.1	$T'(x\cos\theta - y\sin\theta; y\cos\theta + x\sin\theta)$	✓ x coordinate ✓ y coordinate (2)
7.2	A' $(p\cos 135^{\circ} - q\sin 135^{\circ}; q\cos 135^{\circ} + p\sin 135^{\circ})$ If clockwise rotation: A' $(p\cos 135^{\circ} + q\sin 135^{\circ}; q\cos 135^{\circ} - p\sin 135^{\circ})$	Clock-wise formula: $0/2$ $\checkmark x$ coordinate $\checkmark y$ coordinate (2)
	1850 (1. New 2014) (1. 1970) (1. 197	CA from 7.1
7.3	$x' = p\cos(135^\circ) - q\sin(135^\circ)$ $-1 - \sqrt{2} = -p\cos 45^\circ - q\sin 45^\circ$	✓ equating
	$-1 - \sqrt{2} = -p\left(\frac{\sqrt{2}}{2}\right) - q\left(\frac{\sqrt{2}}{2}\right)$	✓ substitution
	$-1 - \sqrt{2} = -\frac{\sqrt{2}}{2} p - \frac{\sqrt{2}}{2} q \dots (1)$	
	and $y' = y \cos(135^\circ) + p \sin(135^\circ)$	✓ equating
	$1 - \sqrt{2} = -q\cos 45^{\circ} + p\sin 45^{\circ}$	
	$1 - \sqrt{2} = q \left(-\frac{\sqrt{2}}{2} \right) + p \left(\frac{\sqrt{2}}{2} \right)$	\checkmark substitution $\frac{\sqrt{2}}{2}$
	$1 - \sqrt{2} = -\frac{\sqrt{2}}{2}q + \frac{\sqrt{2}}{2}p(2)$	
	$(1) + (2): -2\sqrt{2} = -\sqrt{2}a$	✓ solving simultaneously
	q = 2	solving sinultaneously

Copyright reserved

Please turn over

Mathematics/P2

16 NSC – Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.

If a candidate does a question twice and does not delete either, mark the FIRST attempt. . If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt

$$-\frac{\sqrt{2}}{2}(p+q) = -1 - \sqrt{2}$$

$$p+q = -\frac{2}{\sqrt{2}}(-1 - \sqrt{2})$$

$$p+q = \sqrt{2} + 2$$

$$and$$

$$\frac{1}{\sqrt{2}}(p-q) = 1 - \sqrt{2}$$

$$p-q = \sqrt{2} - 2$$

$$p+q = \sqrt{2} + 2$$

$$2p = 2\sqrt{2}$$

$$p = \sqrt{2}$$

$$q = 2$$

$$\sqrt{2}$$

$$\sqrt{$$

Copyright reserved

NSC - Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.

If a candidate does a question, crosses it out and does not re-do it, mark the deleted att

		✓ answer for q
Substitute $q = 2$ into(1)		
$-1 - \sqrt{2} = -\frac{\sqrt{2}}{2} p - \frac{\sqrt{2}}{2} (2)$ $-1 = -\frac{\sqrt{2}}{2} p$	Note: If not left in surd form: 6/7	✓ answer for p
$p = \sqrt{2}$ $\therefore \mathbf{A} = (\sqrt{2}; 2)$		answer for p
OR		
$x' = p\cos(135^{\circ}) - q\sin(135^{\circ})$		✓ equating
$-1 - \sqrt{2} = -p\cos 45^{\circ} - q\sin 45^{\circ}$		✓ substitution
$-1 - \sqrt{2} = -p\left(\frac{\sqrt{2}}{2}\right) - q\left(\frac{\sqrt{2}}{2}\right)$		
$-1 - \sqrt{2} = -\frac{\sqrt{2}}{2} p - \frac{\sqrt{2}}{2} q \dots$	(1)	
and $y' = y \cos(135^\circ) + p \sin(135^\circ)$		
$1 - \sqrt{2} = -q\cos 45^\circ + p\sin 45^\circ$		✓ equating
$1 - \sqrt{2} = q \left(-\frac{\sqrt{2}}{2} \right) + p \left(\frac{\sqrt{2}}{2} \right)$		\checkmark substitution $\frac{\sqrt{2}}{2}$
-0.41 = -0.71q + 0.71p (1) + (2):	(2)	
$-2\sqrt{2} = -\sqrt{2}q$ $q = 2$		
Substitute $q = 2$ into(1)		✓ solving simultaneously
-2,41 = -0,71p - 0,71q (2) $1,42p = 2$.)	✓ answer for q
p = 1,41	Note: If not left in	✓ answer for p
$\therefore A = (\sqrt{2}; 2)$	surd form: 6/7	(7
OR		

Copyright reserved

DoE/November 2009(1)

NSC - Memorandum Consistent Accuracy will apply as a general rule.

If a candidate does a question twice and does not delete either, mark the FIRST attempt. If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt

8.1	$\sin \alpha = \frac{8}{17} \tag{-15;8}$	
	17	$x = -\sqrt{15}$
	$\sin \alpha > 0$: in second quadrant	→ answer
	$y_a = 8 r_a = 17$	(3)
	$x_{\alpha} = -15$ (Pythagoras)	For drawing the radius vector in the correct
	$\tan \alpha = -\frac{8}{15}$	quadrant 1/3
	15	
		Without a sketch but correct values: 3/3
8.2	$\sin(90^\circ + \alpha) = \cos \alpha$	✓ reduction
	$=-\frac{15}{17}$	✓ answer
	$=-\frac{17}{17}$	(2) Answer only: full marks
		Cannot accept decimal
		values
8.3	$\cos 2\alpha = 1 - 2\sin^2 \alpha$	✓ expansion
	$=1-2\left(\frac{8}{17}\right)^2$	
	$=1-2\left(\frac{17}{17}\right)$	✓ substitution
	$=\frac{161}{289}$	✓ any further
	289	calculation or answer
	OR	(3)
	$\cos 2\alpha = 2\cos^2 \alpha - 1$	
	Charles Anna Charles Charles Print, San	✓ expansion
	$=2\left(\frac{-15}{17}\right)^2-1$	
		✓ substitution
	$=\frac{161}{289}$	
	269	✓ any further calculation or answer
	OR	(3)
	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$	
	$(-15)^2 (8)^2$	✓ expansion
	$=\left(\frac{-15}{17}\right)^2 - \left(\frac{8}{17}\right)^2$	
	161	✓ substitution
	$=\frac{161}{289}$	
		✓ any further
		calculation or answer (3)
		[8

Copyright reserved

Mathematics/P2

18 NSC – Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 9

.....

Λ 1	Penalise once in this question for	r treating as an equation	
9.1	$\sin(90^{\circ} - x) \cdot \cos(180^{\circ} - x) + \tan x \cdot \cos x$ $= \cos x(-\cos x) + \tan x(\cos x)(-\sin x)$ $= -\cos^{2} x - \frac{\sin x}{\cos x} \cos x \sin x$ $= -\cos^{2} x - \sin^{2} x$ $= -(\cos^{2} x + \sin^{2} x)$ $= -1$	and the same of th	$ √ \sin(90^{\circ} - x) = \cos x $ $ √ \cos(180^{\circ} - x) = -\cos x $ $ √ \cos(-x) = \cos x $ $ √ \sin(180^{\circ} + x) = -\sin x $ $ √ \tan x = \frac{\sin x}{\cos x} $ $ √ \text{ simplification} $ $ √ \text{ answer} $
9.2	, v2	If using – $\cos 80^\circ$: no penalty If the candidate stop at $= \frac{-\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{2}}}$ 6/7	✓ sin 190° = - sin 10° ✓ cos 225° = - cos 45° ✓ tan 390° = tan 30° ✓ cos 100° = - sin 10° ✓ sin 135° = sin 45° or cos 45° ✓ ✓ substitution
9.3	$\sin x + 2\cos^2 x = 1$ $\sin x + 2(1 - \sin^2 x) = 1$ $-2\sin^2 x + \sin x + 1 = 0$ $2\sin^2 x - \sin x - 1 = 0$ $(2\sin x + 1)(\sin x - 1) = 0$ $\sin x = 1$		✓ substitution of identity ✓ standard form ✓ factorisation
	$x = 90^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ Or		

Copyright reserved

Mathematics/P2

20 NSC – Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 10

10.1	$\frac{\sin(A+B)}{\sin(A+B)} = \frac{\sin A \cdot \cos B + \cos A \cdot \sin B}{\sin(A+B)}$	✓ expansions
	$\frac{1}{\cos(A+B)} = \frac{1}{\cos A \cdot \cos B - \sin A \cdot \sin B}$	
	1	
	$= \frac{\sin A \cdot \cos B + \cos A \cdot \sin B}{\cos A \cdot \cos B - \sin A \cdot \sin B} \times \frac{\cos A \cdot \cos B}{1}$	✓ divisions
	$\cos A \cdot \cos B - \sin A \cdot \sin B$	
	$\cos A.\cos B$	
	$\frac{\sin A \cdot \cos B}{\cos A} + \frac{\cos A \cdot \sin B}{\cos A}$	
	$=\frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}$	
	$\frac{\cos A \cdot \cos B}{\sin A \cdot \sin B}$	✓ tanA and tanB
	$\cos A.\cos B \cos A.\cos B$	(3
	$=\frac{\tan A + \tan B}{B}$	
	$-1 - \tan A \cdot \tan B$	
	OR	
	$RHS = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$	
		$\sqrt{\frac{\sin A}{}}$
	$\sin A + \sin B$	$\frac{1}{\cos A}$
	$= \frac{\cos A + \cos B}{1 - \frac{\sin A}{\sin B}} \times \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}$	800.00
	$1 - \frac{\sin A}{\sin B} \frac{\sin B}{\cos A \cdot \cos B}$	
	$\cos A \cos B$	
	$= \frac{\sin A \cos B + \sin B \cos A}{2}$	✓ multiplication
	$\cos A \cos B - \sin A \sin B$	
	sin	√ expansions
	$=\frac{\sin(A+B)}{\cos(A+B)}$	(3
	$\cos(A+B)$	
	$= \tan(A+B)$	
	= LHS	
10.2	$\tan C = \tan(180^\circ - (A+B))$	✓ C
	$\tan C = -\tan(A+B)$	
	$(\tan A + \tan B)$	$\checkmark - \tan(A+B)$ \checkmark substitution into
	$\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$	formula
	$\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$	✓ multiplication with
	$\tan C - \tan A \cdot \tan B \cdot \tan C = -\tan A - \tan B$	LCD
	$\tan A + \tan B + \tan C = \tan A \cdot \tan B$	
		If no conclusion: 3/4
	OR	II no conclusion. 3/4

Copyright reserved

Please turn over

Mathematics/P2

19 NSC – Memorandum

DoE/November 2009(1)

 Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt. If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$\sin x = -\frac{1}{2}$ $x = 210^{\circ} + k.360^{\circ}; k \in Z OR x = 210^{\circ} + k.360^{\circ}$ or $x = 330^{\circ} + k.360^{\circ}; k \in Z or x = -30^{\circ} + k.360^{\circ}$ OR $x = -150^{\circ} + k.360^{\circ}; k \in Z OR x = -150^{\circ} + k.360^{\circ}; k \in Z$	✓ manipulation✓ substitution of identity✓ co ratios
$or x = 330^{\circ} + k.360^{\circ}$ $or x = -30^{\circ} + k.360^{\circ}$	$\checkmark x = 180^{\circ} + (90^{\circ} - 2x) + k360$ $\checkmark x = 90^{\circ} + k120^{\circ}$
OR	$\sqrt{x} = 360^{\circ} - (90^{\circ} - 2x) + k360^{\circ}$
$\sin x + 2\cos^2 x = 1$	$\sqrt{x} = -270^{\circ} - k360^{\circ}$
$\sin x = 1 - 2\cos^2 x$	
$\sin x = -\cos 2x$	If $k \in \mathbb{Z}$ not included: $6/7$
$ \sin x = -[\sin(90^{\circ} - 2x)] x = 180^{\circ} + (90^{\circ} - 2x) + k360^{\circ} 3x = 270^{\circ} + k360^{\circ} x = 90^{\circ} + k120^{\circ} k \in \mathbb{Z} $ or $ x = 360^{\circ} - (90^{\circ} - 2x) + k360^{\circ} x = -270^{\circ} - k360^{\circ} $	✓ manipulation ✓ substitution of identity ✓ co ratios
OR	/
	$2x = 180^{\circ} - (90^{\circ} - x) + k360^{\circ}$
$\sin r + 2\cos^2 r = 1$	$\sqrt{x} = 90^{\circ} + k360^{\circ}$
$\sin x + 2\cos^2 x = 1$ $\sin x = 1 - 2\cos^2 x$	$\checkmark 2x = 180^{\circ} + (90^{\circ} - x) + k36$ $\checkmark x = 30^{\circ} + k120^{\circ}$
$\sin x = 1 - 2\cos^2 x$ $\sin x = -\cos 2x$	- 1-30 + X120
$\sin x = -\cos 2x$ $-\cos(90^{\circ} - x) = \cos 2x$	NACEDTON MAN OF UP 1000 M SWATZEN
$2x = 180^{\circ} + (90^{\circ} - x) + k360^{\circ}$	If $k \in \mathbb{Z}$ not included: $6/7$
$2x = 180^{\circ} - (90^{\circ} - x) + k360^{\circ}$ or $3x = 270^{\circ} + k360^{\circ}$	[2
$x = 90^{\circ} + k360^{\circ}$ $x = 30^{\circ} + k120^{\circ}$	
$k \in \mathbb{Z}$	

Copyright reserved

Please turn over

Mathematics/P2

21 NSC – Memorandum

DoE/November 2009(1)

Consistent Accuracy will apply as a general rule.

If a candidate does a question twice and does not delete either, mark the FIRST attempt. If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

```
\hat{C} = 180^{\circ} - (\hat{A} + \hat{B}) (angles in a triangle)
\tan C = \tan(180^{\circ} - (A+B))
                                                                                                      ✓ rearrange angle✓ substitution into
\tan C = \tan((180^\circ - A) + (-B))
\tan C = \frac{\tan(180^{\circ} - A) + \tan(-B)}{1 - \tan(180^{\circ} - A) \cdot \tan(-B)}
                                                                                                      formula

✓ expansion

\tan C(1 - \tan(180^{\circ} - A) \cdot \tan(-B)) = \tan(180^{\circ} - A) + \tan(-B)
                                                                                                                                       (4)
\tan C - \tan C \tan A \tan B = -\tan A - \tan B
\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C
```

QUESTION 11

11.1.1	$B\hat{D}A = 208^{\circ} - 67^{\circ}$	✓ BDC = 141°
	=141°	
	sin DBA sin 141°	✓ sine rule ✓ substitution
	97 = 120	Discontinuity
	$\sin \mathbf{D} \hat{\mathbf{B}} \mathbf{A} = 0,5087006494$	✓ B = 30.58°
	$D\hat{B}A = 30,58^{\circ}$	\checkmark method or
	∴ Bearing of Ship A from Ship B	$M\hat{B}D = 28^{\circ}$
	$= 180^{\circ} - (360^{\circ} - 208^{\circ}) + 30,58^{\circ}$	✓ answer
	= 58,58°	(6)
	OR $B\hat{D}A = 208^{\circ} - 67^{\circ}$	
	=141°	✓ BDC = 141°
	$\sin D\hat{B}A = \sin 141^{\circ}$	
	97 = 120	✓ sine rule
	$\sin D\hat{B}A = 0,5087006494$	✓ substitution
	$D\hat{B}A = 30,58^{\circ}$	
	then $360^{\circ} - 208^{\circ} = N\hat{D}B$ (reflex angles)	$\checkmark N\hat{D}B = 152^{\circ}$
	$\therefore N\hat{D}B = 152^{\circ}$	
	but $M\hat{B}D + N\hat{D}B = 180^{\circ}$ (co-interior angles/angles around a point)	
	$\therefore M\hat{B}D = 28^{\circ}$	$\checkmark M\hat{B}D = 28^{\circ}$
	then $M\hat{B}A = M\hat{B}D + D\hat{B}A$	
	=30,58° + 28°	✓ answer
	= 58,58°	(6)

Copyright reserved

DoE/November 2009(1) Mathematics/P2 Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt. If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt. 11.1.2 $\hat{B} = 30.58^{\circ}$ $=\sin(28^{\circ}+30,58^{\circ})$ $EA = 120 \sin(28^{\circ} + 30,58^{\circ})$ ✓ definition EA = 102,4 km ✓ substitution OR 120 - x✓ answer (3) 58,58° Let BQ = x, then AQ = 120 - x $\sin 58,58^{\circ} = \frac{QK}{120 - x}$ $\sin 58,58^{\circ} = \frac{PQ}{}$ $QR = (120 - x)\sin 58,58^{\circ}$ $PQ = x.\sin 58,58^{\circ}$ $PQ + QR = x.\sin 58,58^{\circ} + (120 - x)\sin 58,58^{\circ}$ trigonometeric ratios $= 120 \sin 58,58^{\circ}$ =102,4✓ sum BP = AR(assume ships move at same speed) ✓ answer (3) Mathematics/P2

24 NSC – Memorandum

DoE/November 2009(1)

 Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt. If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 12

Copyright reserved

Please turn over

Copyright reserved

23 NSC – Memorandum

DoE/November 2009(1)

trigonometeric

Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt.

If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt

NSC - Memorandum

DoE/November 2009(1)

 Consistent Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, mark the FIRST attempt. If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 12

12.2	$\cos(x-30^\circ) = \frac{1}{2}$	√manipulation
	$2\cos(x-30^{\circ})=1$ See points A and B on the graph	✓ answer
	Note: If drawn the line $y = \frac{1}{2}$ and put A and B on the graph: $0/2$	A and B in the correct place on the graph: full marks
	If A and B on the x-axis: $1/2$ If $A = -30^{\circ}$ and $B = 90^{\circ}$: $1/2$	
12.3	$cos(x-30^{\circ}) = 0.5$ $x-30^{\circ} = 60^{\circ}$ $x = 90^{\circ}$ OR $x = -30^{\circ}$ $x = -30^{\circ}$	✓ 60° (ref angle) ✓ 90° ✓ - 30° Answer only: 3/3
12.4	$g'(x) = 0$ is at maximum and minimum values of graph $x = 30^{\circ}$; 210°	✓✓ one for each x-value (2)
12.5	$x \in [-90^{\circ}; -60^{\circ}) \cup (120^{\circ}; 270^{\circ}]$	✓ notation ✓✓ critical values
	OR $-90^{\circ} \le x < -60^{\circ}$ or $120^{\circ} < x \le 270^{\circ}$	(3)
	OR If $x < -60^{\circ} or x > 120^{\circ}$ 2/3	[12]

Grade 12 Education Supplement 2010

Mathematics/P2

3 NSC

DoE/November 2008

QUESTION 1

ABCD is a quadrilateral with vertices A(-3;0), B(-1;-3), C(2;-1) and D(0;2).

Determine the coordinates of M, the midpoint of AC.
 Show that AC and BD bisect each other.
 Prove that ADC = 90°.
 Show that ABCD is a square.
 Determine the size of θ, the angle of inclination of DC, correct to ONE decimal place.
 Does C lie inside or outside the circle with centre (0; 0) and radius 2? Justify your

Copyright reserved

Please turn ove

Mathematics/P2

5 NSC DoE/November 2008

QUESTION 3

3.1 The point $P(-\sqrt{2}\;;\sqrt{3}\;)$ lies in a Cartesian plane. Determine the coordinates of the image of P if:

3.1.1 P is reflected in the line y = x.

(2)

(2)

3.1.2 P is rotated about the origin through 180°.

3.2 The vertices of the polygon ABCDE are shown in the grid. The coordinates are: A(1; 1), B(1; 2), C(2; 3), D(3; 2) and E(2; 2). Each of the points of ABCDE in the grid below is rotated about the origin in a clockwise direction through an angle of 90°.

3.2.1 Write down the coordinates of D^{\prime} , the image of D.

3.2.2 Sketch and label the vertices of A'B'C'D'E', the image of ABCDE on DIAGRAM SHEET 1.

3.2.3 The polygon A'B'C'D'E' is then enlarged through the origin by a factor of 3 in order to give the polygon A''B''C''D''E''. Write down the

coordinates of D^{g} , the image of D^{f} .

3.2.4 Write down the general transformation of a point (x; y) in ABCDE to $(x^{g} + x^{g})$ ofter ABCDE has undergone the above two transformations:

(x''; y'') after ABCDE has undergone the above two transformations; that is, rotation in a clockwise direction through an angle of 90° followed by an enlargement through the origin by a factor of 3.

3.2.5 Calculate the ratio of Area ABCDE: Area $A^{\kappa}B^{\kappa}C^{\kappa}D^{\kappa}E^{\kappa}$.

[18] se turn over

(1)

(5)

(2)

(4)

opyright reserved

Please turn over

Mathematics/P2

4

DoE/November 2008

QUESTION 2

O is the centre of the circle in the figure below. P(x;y) and Q(12:5) are two points on the circle. POQ is a straight line. The point R(t;-1) lies on the tangent to the circle at Q.

2.1	Determine the equation of the circle.	(3)
2.2	Determine the equation of the straight line through P and Q.	(2)
2.3	Determine x and y , the coordinates of P .	(2)
2.4	Show that the gradient of QR is $-\frac{12}{5}$.	(2)
2.5	Determine the equation of the tangent QR in the form $y =$	(3)
2.6	Calculate the value of t.	(2)
2.7	Determine an equation of the circle with centre $Q(12\ ; 5)$ and passing through the origin.	(3) [17]

Copyright reserved

Please turn over

Mathematics/P2

6

DoE/November 2008

QUESTION 4

Determine the coordinates x and y of P', the image of P(2;3) when OP is rotated about the origin through an angle of 45° in the clockwise direction.

QUESTION 5

5.1 Do NOT use a calculator to answer this question. Show ALL calculations.

Prove that:

5.1.1 $\frac{\tan 480^{\circ}.\sin 300^{\circ}.\cos 14^{\circ}.\sin (-135^{\circ})}{\sin 104^{\circ}.\cos 225^{\circ}} = \frac{3}{2}.$

 $\cos 75^\circ = \frac{\sqrt{2}(\sqrt{3}-1)}{4}$

Prove that $\cos(90^{\circ} - 2x) \cdot \tan(180^{\circ} + x) + \sin^2(360^{\circ} - x) = 3 \sin^2 x$

(6) [16]

(4)

(5)

[7]

QUESTION 6

5.1 6.1.1 Prove that $(\tan x - 1)(\sin 2x - 2\cos^2 x) = 2(1 - 2\sin x \cos x)$ (5)

6.1.2 Determine the general solution for: $\frac{\tan x - 1}{2} = -3$ correct to ONE decimal place.

6.2 If $\cos \beta = \frac{p}{\sqrt{5}}$ where p < 0 and $\beta \in [180^{\circ}; 360^{\circ}]$, determine, using a diagram, an expression in terms of p for:

6.2.1 $\tan \beta$ (4) 6.2.2 $\cos 2\beta$ (3)

Copyright reserved

[17] Please turn over Mathematics/P2

NSC

DoE/November 2008

QUESTION 7

A, B and L are points in the same horizontal plane, HL is a vertical pole of length 3 metres, AL = 5,2 m, the angle $\hat{ALB} = 113$ ° and the angle of elevation of H from B is 40°.

7.1 Calculate the length of LB.

- (2)
- 7.2 Hence, or otherwise, calculate the length of AB.
- (4)

Determine the area of ABL. 7.3

[10]

QUESTION 8

Consider the functions $f(x) = \cos 3x$ and $g(x) = \sin x$ for $x \in [-90^{\circ}; 180^{\circ}]$.

Solve for x if f(x) = g(x). 8.1

- (8)
- Sketch the graphs of f and g on the system of axes on DIAGRAM SHEET 2 for $x \in [-90^\circ; 180^\circ].$
 - (6)
- Solve for x if $f(x) \le g(x)$ where $x \in [-90^{\circ}; 0^{\circ}]$.

Copyright reserved

Mathematics/P2

DoE/November 2008

QUESTION 11

A parachutist jumps out of a helicopter and his height above ground level is estimated at various times after he opened his parachute. The following table gives the results of the observations where y measures his height above ground level in metres and t represents the time in seconds after he opened his parachute.

t	2	3	4	5	6	7	8
v	500	300	200	120	70	40	20

- 11.1 On DIAGRAM SHEET 4, draw a scatter plot for the above information.
- Describe the curve of best fit. 11.2 (1)
- Use the scatter plot to estimate the height of the parachutist 5,5 seconds after he had 11.3 opened his parachute.

[4]

(2)

QUESTION 12

The box and whisker plots below summarise the final test scores for two of Mr Jack's

- Describe the features in the scores that are the same for both classes. 12.1
- (2) (2)
- 12.2 Calculate the interquartile range for Class B.

your answer with reasons.

- Mr Jack considers the median of each class and reports that there is no significant difference in the performance between them. Is Mr Jack's conclusion valid? Support
- (3) [7]
- TOTAL: 150

Copyright reserved

Mathematics/P2

DoE/November 2008

(2)

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{}$

INFORMATION SHEET: MATHEMATICS INLIGTINGSBLAD: WISKUNDE

DoE/November 2008

 $A = P(1+i)^n$

The time taken, in minutes, to complete a 5 kilometre race by a group of 10 runners is given below:

18	21	16	24	28	20	22	29	19	23	

- 9.1 Calculate the mean time taken to complete the race.
- Calculate the standard deviation of the time taken to complete the race. (Use the (4) formula on the information sheet.)
- How many runners completed the race within one standard deviation of the mean?

$A = P(1+ni) \qquad A = P(1-ni)$

 $A = P(1-i)^n$

 $\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} (a+(i-1)d) = \frac{n}{2} (2a+(n-1)d)$

$$\sum_{i=1}^n a r^{i-1} = \frac{a \left(r^n - 1 \right)}{r-1} \quad ; \qquad r \neq 1 \qquad \qquad \sum_{i=1}^n a r^{i-i} = \frac{a}{1-r} \; ; \; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

 $(x-a)^2 + (y-b)^2 = r^2$

In AABC.

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ $area \Delta ABC = \frac{1}{2}ab.\sin C$

 $\sin(\alpha + \beta) = \sin\alpha, \cos\beta + \cos\alpha.\sin\beta$ $\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$ $\sin(\alpha - \beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta$ $\cos(\alpha - \beta) = \cos\alpha.\cos\beta + \sin\alpha.\sin\beta$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \end{cases}$$

 $\sin 2\alpha = 2\sin \alpha . \cos \alpha$

$$2\alpha = \begin{cases} 1 - 2\sin^2 \alpha & \sin 2\alpha = 2s \\ 2\cos^2 \alpha - 1 & \end{cases}$$

$$\overline{x} = \frac{\sum fx}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

 $b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$ $\hat{y} = a + bx$

Copyright reserved

9.2

QUESTION 10

A street vendor has kept a record of sales for November and December 2007. The daily sales in rands is shown in the histogram below.

- On DIAGRAM SHEET 3, complete the cumulative frequency table for the sales over 10.1
- Draw an ogive for the sales over November and December on DIAGRAM SHEET 3. (3) 10.2
- 10.3 Use your ogive to determine the median value for the daily sales. Explain how you (1)
- 10.4 Estimate the interval of the upper 25% of the daily sales.

Maths Paper 02 2008

Mathematics/P2	NSC	DoE/November 2008
EXAMINATION NUMBER:		
DIAGRAM SHEET 1		
QUESTION 3.2		
-5 -4 -3 -2	2 B C E D	. x 5

DoE/November 2008

EXAMINATION NUMBER:

DIAGRAM SHEET 3

QUESTION 10.1

DAILY SALES	FREQUENCY	CUMULATIVE FREQUENCY

QUESTION 10.2

Sales for November and December 2007

Copyright reserved

Mathematics/P2 DoE/November 2008 NSC EXAMINATION NUMBER:

DIAGRAM SHEET 2

QUESTION 8.2

Copyright reserved

Copyright reserved

DoE/November 2008

EXAMINATION NUMBER:

DIAGRAM SHEET 4

QUESTION 11.1

Exercise

Exercise

Together Educating the Nation

30

DoE/November 2008

Mathematics/P2 2 DoE/November 2008

NSC - Memorandum

Continued accuracy applies as a rule in the memorandum.

If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 1

1.1	$_{\mathbf{M}}\left(\frac{2-3}{2};\frac{-1+0}{2}\right)$	✓ substitution into midpoint formula
	$=\left(-\frac{1}{2};-\frac{1}{2}\right)$	✓ answer for both coordinates (2)
		Answer only: 1 mark per coordinate
1.2	Midpoint BD	Wrong formula: 0 / 2
1.2	$=\left(\frac{-1+0}{2};\frac{-3+2}{2}\right)$	✓ substitution into formula
	$= \left(-\frac{1}{2}; -\frac{1}{2}\right)$ $\therefore \text{ Midpoint of AC and BD are the same point therefore AC and BD bisect each other}$	✓ answer ✓ conclusion (midpoints are the
	OR	same) (3)

Mathem	NSC - Memorandum	DoE/November 2
	OR	
	$AD^{2} = (2-0)^{2} + (0-(-3))^{2}$ $AD^{2} = 13$	$\checkmark AD^2 = 13$
	$DC^2 = (2 - (-1))^2 - (0 - 2)^2$	$\checkmark DC^2 = 13$
	$DC^2 = 13$ $AC^2 = (0 - (-1))^2 + (-3 - 2)^2$	$\checkmark AC^2 = 26$
	$AC^2 = 26$	• AC = 26
	$AD^2 + DC^2$ = 13 + 13	
	$= 26$ $= AC^2$	
	$\therefore AD \perp DC$ $\therefore A\hat{D}C = 90^{\circ}$	✓ conclusion (4
1.4	$BD = \sqrt{(2+3)^2 + (0+1)^2}$	✓ answer for BD
	$=\sqrt{26}$	✓ answer for AC
	$AC = \sqrt{(-3-2)^2 + (0+1)^2}$ $= \sqrt{26}$	✓ diagonals are equa
	diagonals are equal diagonals bisect each other (Proved in 1.2) (i.e. ABCD is a rectangle)	✓ bisect each other
	$m_{AC} m_{BD}$ $= \frac{1}{-5} \times \frac{5}{1}$	$\checkmark m_{AC}, m_{BD} = -1$
	=-1	✓. AC ⊥ BD
	AC ⊥ BD	(6
	OR	
	$AD^{2} = (2-0)^{2} + (0-(-3))^{2}$ $AD^{2} = 13$	✓ substitution ✓ answer for AD
	$DC^{2} = (2 - (-1))^{2} + (0 - 2)^{2}$ $DC^{2} = 13$	✓ substitution ✓ answer for DC
	The figure is a rectangle and one pair of adjacent sides are ed in length ∴ it is a square.	v answer for DC √√ conclusion (0
	OR	

Mathema	707070707	3 NSC - Memorandum	DoE/November 2
	$AM = \sqrt{\left(-3 + \frac{1}{2}\right)^2}$ $AM = \sqrt{6.5}$ $CM = \sqrt{\left(2 + \frac{1}{2}\right)^2} - \frac{1}{2}$ $CM = \sqrt{6.5}$ $BM = \sqrt{\left(-1 + \frac{1}{2}\right)^2}$ $BM = \sqrt{6.5}$ $DM = \sqrt{\left(0 + \frac{1}{2}\right)^2} + \frac{1}{2}$ $DM = \sqrt{6.5}$ AC and BD bisect of	$\frac{\left(-1+\frac{1}{2}\right)^2}{+\left(-3+\frac{1}{2}\right)^2}$ $\frac{\left(2+\frac{1}{2}\right)^2}{\left(2+\frac{1}{2}\right)^2}$	2/3 for answer on the left (because candidate did not show that M is on BD)
1.3	$m_{AD} = \frac{2-0}{0+3}$ $m_{AD} = \frac{2}{3}$ $m_{CB} = \frac{-1-2}{2-0}$	Note: If do: $m_{AD} \times m_{CD} = -1$ $\frac{2}{3} \times -\frac{3}{2} = -1$	✓ answer m_{AD} ✓ answer m_{CD}
	$m_{CD} = -\frac{3}{2}$ $m_{AD} \times m_{CD}$ $= \frac{2}{3} \times -\frac{3}{2}$ $= -1$ $\therefore AD \perp CD$	3 2 -1 = $-1then 3/4 if calculated the gradients correctly.If m_{AD} \times m_{CD} = -1 and concludeAD \perp CD without any working, then 1/4$	$ ✓ m_{AD} × m_{CD} = -1 $ ✓ conclude $ A\hat{D}C = 90^{\circ} $
	$\therefore \hat{ADC} = 90^{\circ}$	OR	(4
	$\tan \theta = m_{CD}$ $\tan \theta = -\frac{3}{2}$		$\checkmark \tan \theta = m_{CD}$
	$\theta = 123,69^{\circ}$ $\tan D\hat{A}C = \frac{2}{3}$		✓ θ = 123,69°
	$D\hat{A}C = 33,69^{\circ}$		$\checkmark D\hat{A}C = 33,69^{\circ}$
	$A\hat{D}C = 123,69^{\circ} - 3$ $A\hat{D}C = 90^{\circ}$	3,69°	✓ ADC = 90°

	NSC - Memorandum	
	$AD^{2} = (2-0)^{2} + (0-(-3))^{2}$ $AD^{2} = 13$	✓ answer for AD
	$DC^2 = (2 - (-1))^2 + (0 - 2)^2$	✓ answer for AB
	$DC^2 = 13$ $AB^2 = (-3 - (-1))^2 - (0 - (-3))^2$	✓ answer for DC
	$AB^2 = 13$	✓ answer for BC
	$BC^{2} = (2 - (-1))^{2} + (-1 - (-3))^{2}$ $BC^{2} = 13$	✓ all four sides are equal
	All four sides equal and one internal angle equal to 90°	✓ one internal angle equal to 90° (6)
	OR	(6)
	The diagonals bisect one another $A\hat{D}C = 90^{\circ}$ $AD^{2} = (2-0)^{2} + (0-(-3))^{2}$ $AD^{2} = 13$ $DC^{2} = (2-(-1))^{2} + (0-2)^{2}$ $DC^{2} = 13$ $\therefore \text{ adjacent sides equal in length}$ $\therefore ABCD \text{ is a square}$	✓ diagonals bisect each other ✓ $\Lambda \hat{D}C = 90^{\circ}$ ✓ substitution into distance formula ✓ answer for AD ✓ answer for DC ✓ conclusion (6)
1.5	$\tan \theta = \frac{2+1}{0-2}$ $\tan \theta = -\frac{3}{2}$ $\theta = -56,30993247+180^{\circ}$ $\theta = 123,7^{\circ}$	\checkmark gradient of CD \checkmark tan θ = $-\frac{3}{2}$ \checkmark answer (3)
	tan $D\hat{A}O = \frac{2}{3}$ $D\hat{A}O = 33.7^{\circ}$ $A\hat{D}C = 90^{\circ}$ $\theta = 90^{\circ} + 33.7^{\circ}$ $\theta = 123.7^{\circ}$	$\forall \theta = 90^{\circ} + D\hat{A}O$ $\forall \tan D\hat{A}O = \frac{2}{3}$ $\forall \text{ answer}$ (3)

Mathen	natics/P2 6 NSC - Memorandum	DoE/November 200
1.6	$OC^2 = (2 - 0)^2 + (-1 - 0)^2$ $OC^2 = 5$ OC = 2,236067977 OC > 2 C lies outside the circle	✓ OC² ✓ answer
	OR $OC^2 = (2-0)^2 + (-1-0)^2$ $OC^2 = 5$ $OC^2 > 4$ C lies outside the circle	Answer only: 0 / 2 [20]
	OR $x^{2} + y^{2} = 4$ $(2)^{2} + (-1)^{2} = 5 > 4$ C lies outside the circle	

Mathema	NSC - M	8 DoE/November 2008 emorandum
2.3	P(-12; -5) (By symmetry)	$\checkmark x = -12$
	OR	✓ y = -5
	OR	(2)
	$x^2 + y^2 = 169$	
	2 (5)2	
	$x^2 + \left(\frac{5}{12}x\right)^2 = 169$	
	$144x^2 + 25x^2 = 169 \times 144 = 24336$	
	$169x^2 = 24336$	
	$x^2 = 144$	
	$x = \pm 12$	
	x = -12	
	y = -5	
2.4	tangent ⊥ diameter	
	$m_{PQ} \times m_{QR} = -1$	$\checkmark \checkmark m_{PQ} \times m_{QR} = -1$
	1	
	$m_{PQ} = \frac{5}{12}$	(2)
	$\cdot m = -\frac{1}{1} = -\frac{12}{12}$	
	$\therefore m_{QR} = -\frac{1}{\frac{5}{12}} = -\frac{12}{5}$	
	OR	
	PQ ⊥ QR	*
	$m_{CR} = -\frac{12}{5}$	✓✓ PQ ⊥ QR
	5	
		(2)
2.5	$y = \frac{-12}{5}x + c$	
		$\checkmark y = mx + c$
	$5 = \frac{-12}{5}(12) + c$	✓ substitution of gradient and (12; 5)
		and (12, 5)
	$c = \frac{169}{5}$	\checkmark calculation of c .
		(3)
	$y = -\frac{12}{5}x + \frac{169}{5}$	
	OR	
	2.4	**
	y = -2,4x + 33,8	
	OR	
	T .	
	ii ii	
	1	

2.2	$m_{PQ} = \frac{5-0}{12-0}$ $m_{PQ} = \frac{5}{12}$ $\therefore y = \frac{5}{12}x$	
		✓ $x^2 + y^2 = r^2$ ✓ substitution coordinates ✓ 169 (3) Answer only: Full marks
	OR $x^2 + y^2 = (5)^2 + (12)^2 = 169$	(3)
	$= (5)^{2} + (12)^{2}$ $= 169$ $\therefore x^{2} + y^{2} = 169$	$x^2 + y^2$ $\checkmark 169$ $\checkmark x^2 + y^2 = 169$

Mathem	atics/P2 9 NSC - Memorandum	DoE/November 2008
	$y - y_1 = m(x - x_1)$ $y - 5 = -\frac{12}{5}(x - 12)$ $5y - 25 = -12(x - 12)$	✓ formula ✓ substitution of gradient and (12;5)
	$5y = -12x + 144 + 25$ $5y = -12x + 169$ $12x + 5y - 169 = 0$ $y = -\frac{12}{5}x + \frac{169}{5}$	
	5 2 5	✓ equation in correct form (3
2.6	$-1 = \frac{-12}{5}(t) + \frac{169}{5}$ $12t = 174$ $t = \frac{174}{12}$ $t = 14,5$	\checkmark substitution of $(t:-1)$ \checkmark answer
	OR	
	$m_{QO} \times m_{QR} = -1$ $\frac{5}{12} \times \frac{-6}{t - 12} = -1$ $t = 14,5$	$\checkmark \frac{5}{12} \times \frac{-6}{t - 12} = -1$ $\checkmark \text{ answer}$
	OR	
	$PQ^{2} + QR^{2} = PR^{2}$ 576 + 100 + (12 - t)^{2} + 36 = (t + 12)^{2} + 16 712 + 144 - 24t + t ² = t ² + 24t + 144 + 16	 Pythagoras with substitution
	-48t = -696 $t = 14,5$	✓ answer
2.7	$(x-12)^{2} + (y-5)^{2} = OQ^{2}$ $OQ^{2} = (12-0)^{2} + (5-0)^{2} = 169$ $(x-12)^{2} + (y-5)^{2} = 169$	$\begin{array}{c} \checkmark (x-12)^2 \\ \checkmark (y-5)^2 \\ \checkmark 169 \end{array}$
	OR	G
	$(x)^2 + (y)^2 = 169$ By translating 12 units right and 5 units up $(x-12)^2 + (y-5)^2 = 169$	If answer only: $(x-12)^2 + (y-5)^2 = 169 :$ 3/3
		[1

Mathen	natics/P2 10 NSC - Memorandum	DoE/November 2008
QUES	STION 3	
3.1.1	$P'(\sqrt{3};-\sqrt{2})$	\checkmark x coordinate of P' \checkmark y-coordinate of P'
3.1.2	$P'(\sqrt{2},-\sqrt{3})$	✓ x coordinate of P' ✓ y-coordinate of P' (2
3.2.1	D'(2;-3)	✓ answer
	If rotated anti-clockwise: $D'(-2;3)$	No mark for $D'(-2;3)$
3.2.2	†x	✓ coordinates A' ✓ coordinates B'
ļ		✓ coordinates C'
		✓ coordinates E' ✓ rotation correct
		If all the points on the sketch are correct and
	A'(1) = B'(2) = C'(3) = C'(3	labels are A' etc: 5/5
	D'(2;-	If all the points on the sketch are correct and labels at incorrect point: 4/5
	1	Deduct 2 marks for anti-clockwise direction
		If write down coordinates correctly and did not sketch: 4 / 5
3.2.3	D ^{//} (6;-9)	✓ x-coordinate ✓ y-coordinate
	If rotated anti-clockwise: D" (-6;9)	(2
3.2.4	$(x;y) \rightarrow (y;-x)$	✓ ✓ (y; -x)
	$(y;-x) \rightarrow (3y;-3x)$	$\checkmark \checkmark (3y; -3x)$
	$\therefore (x; y) \to (3y; -3x)$	Answer only: $4/4$ If answer $(ky; -kx)$ 3/4
		If Answer: $3(y; -x)$

Mathematics/	P2 12 NSC - Memorandum	DoE/November 2008
	OR	
	f a candidate rotates clockwise and substitutes 45° the formulae will be:	
	$x' = x \cos \theta + y \sin \theta$	✓ formula for x'
	$x' = 2\cos 45^\circ + 3\sin 45^\circ$	✓ 45° ✓ substitution
	$\mathbf{r}' = 2\left(\frac{\sqrt{2}}{2}\right) + 3\left(\frac{\sqrt{2}}{2}\right)$	• substitution
	V - X V - X	✓ answer for x'
	r' = 3,54	
	$y' = y\cos\theta - x\sin\theta$ $y' = 3\cos 45^{\circ} - 2\sin 45^{\circ}$	✓ formula for y' ✓ substitution
198		▼ substitution
104	$y' = 3\left(\frac{\sqrt{2}}{2}\right) - 2\left(\frac{\sqrt{2}}{2}\right)$	
	y' = 0.71	✓ answer for y'
139	y = 0,71	(7)
	OR	
1	Let $OP = OP' = r = \sqrt{13}$	
	The x-coordinate of $P = r \cos(\theta - 45^{\circ})$	✓ formula $r\cos(\theta-45^{\circ})$
10	$\alpha' = r(\cos\theta.\cos45^{\circ} + \sin\theta.\sin45^{\circ})$	✓ expansion
10	$x' = \sqrt{13}\cos\theta.\cos45^{\circ} + \sqrt{13}\sin\theta.\sin45^{\circ}$	
	$x' = \sqrt{13} \cdot \frac{2}{\sqrt{13}} \cdot \frac{\sqrt{2}}{2} + \sqrt{13} \cdot \frac{3}{\sqrt{13}} \cdot \frac{\sqrt{2}}{2}$	
	VI3 2 VI3 2	✓ substitution
135	$x' = \sqrt{2} + \frac{3\sqrt{2}}{2}$	
	$x' = \frac{5\sqrt{2}}{2}$	✓ answer for x
	2	
	The y-coordinate of $P = r \sin(\theta - 45^\circ)$	✓ formula $r\sin(\theta-45^\circ)$
- 1	$y' = r(\sin\theta.\cos 45^\circ - \cos\theta.\sin 45^\circ)$	✓ expansion
- 1	$y' = \sqrt{13} \sin \theta \cdot \cos 45^{\circ} - \sqrt{13} \cos \theta \cdot \sin 45^{\circ}$	TO SHE SHAW COUNTY CARDING CO
	$y' = \sqrt{13} \cdot \frac{3}{\sqrt{13}} \cdot \frac{\sqrt{2}}{2} - \sqrt{13} \cdot \frac{2}{\sqrt{13}} \cdot \frac{\sqrt{2}}{2}$	
	$y' = \frac{3\sqrt{2}}{2} - \sqrt{2}$	
	$y' = \frac{\sqrt{2}}{2}$	✓ answer for v
1	·	(7)
	$S'\left(\frac{5\sqrt{2}}{2};\frac{\sqrt{2}}{2}\right)$	
	OR	

Mathen	natics/P2 11 NSC - Memorandum	DoE/November 2008
	If rotated anti-clockwise the answer would be: $(x; y) \rightarrow (-y; x)$ $(y; -x) \rightarrow (-3y; 3x)$ $\therefore (x; y) \rightarrow (-3y; 3x)$	4/4
3.2.5	Area ABCDE : area A "B" C "D "E " = 1 ² : 3 ² = 1 : 9	√√ answer (2)
	OR	If A'B''C''D''E'' ABCDE
	$\frac{ABCDE}{A^{''}B^{''}C^{''}D^{''}E^{''}}$ $= \frac{1}{9}$	$= \frac{9}{1}$ 0 / 2 [18]

$x' = x\cos(-45^{\circ}) - y\sin(-45^{\circ})$	✓ formula
$x' = 2\cos 45^{\circ} + 3\sin 45^{\circ}$	✓ -45° or 315°
$x' = 2\left(\frac{\sqrt{2}}{2}\right) + 3\left(\frac{\sqrt{2}}{2}\right)$	\checkmark substitution of $\left(\frac{\sqrt{2}}{2}\right)$
$x' = \frac{5\sqrt{2}}{2}$ or $x' = \frac{5}{\sqrt{2}}$	or $\left(\frac{1}{\sqrt{2}}\right)$
x' = 3,54	
and	
$y' = y \cos(-45^\circ) + x \sin(-45^\circ)$	✓ answer for x
$y' = 3\cos 45^\circ - 2\sin 45^\circ$	
$y' = 3\left(\frac{\sqrt{2}}{2}\right) - 2\left(\frac{\sqrt{2}}{2}\right)$	✓ formula
$y' = \frac{\sqrt{2}}{2}$ or $\frac{1}{\sqrt{2}}$ or 0,71	\checkmark substitution of $\left(\frac{\sqrt{2}}{2}\right)$
$P'\left(\frac{5\sqrt{2}}{2};\frac{\sqrt{2}}{2}\right)$	✓ answer for y
A penalty of 2 marks for substituting 45° instead	
of -45° . The answer will then be $\left(-\frac{\sqrt{2}}{2}; \frac{5\sqrt{2}}{2}\right)$	
or (-0,71; 3,54)	

ematics/P2 13 NSC - Memorandum	DoE/November 20
$2 = x \cos 45^\circ - y \sin 45^\circ$	✓ formula
$3 = y\cos 45^\circ + x\sin 45^\circ$	✓ formula
$2 = \frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{2}}y$	
$\times \sqrt{2} : 2\sqrt{2} = x - y \qquad (1)$	✓ substitution
$3 = \frac{1}{\sqrt{2}}y + \frac{1}{\sqrt{2}}x$	
$\times \sqrt{2}: 3\sqrt{2} = x + y \qquad (2)$	✓ substitution
$(1) + (2)$ $2x = 5\sqrt{2}$	✓ solving simultaneous
$x = \frac{5\sqrt{2}}{2}$	✓ answer x
$\therefore 3\sqrt{2} = \frac{5\sqrt{2}}{2} + y$	✓ answer v
$\therefore y = \frac{1}{2}\sqrt{2}$	• answer y
$\therefore y = \frac{1}{2}\sqrt{2}$	
\mathbf{OR} $(x'; y') = (r\cos(\theta - 45^\circ); r\sin(\theta - 45^\circ))$	
$(x, y) = (r\cos(\theta - 45^{\circ}), r\sin(\theta - 45^{\circ}))$ $x^2 - y^2 = r^2$	
$2^2 - 3^2 = r^2$	
$r = \sqrt{13}$	$\checkmark r = \sqrt{13}$
$\tan \theta = \frac{3}{2}$	$\checkmark r = \sqrt{13}$ $\checkmark \tan \theta = \frac{3}{2}$
θ = 56.30993247°	2 √ θ = 56,30993247°
$x' = r\cos(\theta - 45^{\circ})$	$\checkmark x' = r \cos(\theta - 45^\circ)$
$x' = \sqrt{13}\cos(56,3^{\circ} - 45^{\circ})$	
x' = 3,54	$\sqrt{x'} = 3.54$
$y' = r\sin(\theta - 45^{\circ})$	$\checkmark y' = r \sin(\theta - 45^\circ)$
$y' = \sqrt{13} \sin(56,3^{\circ} - 45^{\circ})$	
y' = 0,71	$\sqrt{y'} = 0.71$
	Answer only: 6 / 7
N N	

Mathematics/P2

14 NSC - Memorandum DoE/November 2008

QUESTION 5

Penalise 1 mark for treating as an equation in this question.

Mathematics/P2

16 NSC - Memorandum DoE/November 2008

QUESTION 6

$(\tan x - 1)(\sin 2x - 2\cos^2 x)$	
$= \left(\frac{\sin x}{\cos x} - 1\right) \left(2\sin x \cdot \cos x - 2\cos^2 x\right)$	$\sqrt{\frac{\sin x}{\cos x}} = \tan x$
$= \left(\frac{\sin x}{\cos x} - 1\right) 2 \cos x (\sin x - \cos x)$	$\checkmark \sin 2x = 2 \sin x . \cos x$ $\checkmark \text{ factorisation}$
$=2(\sin x-\cos x)^2$	✓ simplification
$=2(\sin^2 x-2\sin x.\cos x+\cos^2 x)$	$\sqrt{\sin^2 x + \cos^2 x} = 1$
$=2(1-2\sin x.\cos x)$	
OR	
$(\tan x - 1)(\sin 2x - 2\cos^2 x)$	
$= \left(\frac{\sin x}{\cos x} - 1\right) \left(2\sin x \cdot \cos x - 2\cos^2 x\right)$	$\checkmark \frac{\sin x}{\cos x} = \tan x$
$= 2\sin^2 x - 2\sin x \cdot \cos x - 2\sin x \cdot \cos x + 2\cos^2 x$	$\checkmark \sin 2x = 2\sin x \cdot \cos x$
$=2(\sin^2 x-2\sin x\cos x+\cos^2 x)$	✓ simplification ✓ factorisation
$=2(1-2\sin x.\cos x)$	$\checkmark \sin^2 x + \cos^2 x = 1$
or	
$2(1-2\sin x\cos x)$	
$= 2(\sin^2 x + \cos^2 x - 2\sin x \cos x)$	$\checkmark \sin^2 x + \cos^2 x = 1$
$=2(\sin x-\cos x)^2$	✓ factorisation
$=2\cos^2 x(\frac{\sin x}{\cos x}-1)^2$	$\checkmark \frac{\sin x}{\cos x} = \tan x$
COSX	
$= 2\cos^2 x(\tan x - 1)(\tan x - 1)$	$\checkmark \sin 2x = 2 \sin x . \cos x$ $\checkmark \text{ simplification}$
$= (2\cos^2 x. \tan x - 2\cos^2 x)(\tan x - 1)$ = $(2\sin x \cos x - 2\cos^2 x)(\tan x - 1)$	
$= (2 \sin x \cos x - 2 \cos^{2} x)(\tan x - 1)$ $= (\sin 2x - 2 \cos^{2} x)(\tan x - 1)$	
$= (\sin 2x - 2\cos^2 x)(\tan x - 1)$ OR	
$LHS = (\tan x - 1)(\sin 2x - \cos^2 x)$	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	$\checkmark \frac{\sin x}{\cos x} = \tan x$
$= \frac{\sin x - \cos x}{\cos x} \left(2 \sin x \cdot \cos x - \cos^2 x \right)$	cos x✓ simplification
$=2(\sin x-\cos x)^2$	•
$RHS = 2(\sin^2 x + \cos^2 x - 2\sin x \cos x)$	$\checkmark \sin 2x = 2 \sin x \cdot \cos x$ $\checkmark \sin^2 x - \cos^2 x = 1$
$=2(\sin x-\cos x)^2$	$\checkmark \sin^2 x - \cos^2 x = 1$ $\checkmark \text{factorisation}$
= LHS	

Mathe	ematics/P2 15 NSC - Memorandum	DoE/November 2008
	$\cos 75^{\circ}$ = $\cos(45^{\circ} + 30^{\circ})$ = $\cos 45^{\circ} \cdot \cos 30^{\circ} - \sin 45^{\circ} \cdot \sin 30^{\circ}$ = $\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$ = $\frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}$ = $\frac{\sqrt{3} - 1}{2\sqrt{2}}$	✓ cos(45°+30°) ✓ expansion ✓ substitution ✓ simplification
5.2	$\cos(90^{\circ} - 2x) \cdot \tan(180^{\circ} - x) - \sin^{2}(360^{\circ} - x)$ $= \sin 2x \cdot \tan x + \sin^{2} x$ $= 2\sin x \cdot \cos x \cdot \frac{\sin x}{\cos x} + \sin^{2} x$ $= 2\sin^{2} x + \sin^{2} x$ $= 3\sin^{2} x$	$✓ \sin 2x$ $✓ \tan x$ $✓ \sin^2 x$ $✓ \tan x = \frac{\sin x}{\cos x}$ $✓ \sin 2x = 2\sin x \cdot \cos x$ $✓ 2\sin^2 x$ If uses cos 2x instead of sin 2x and then works correctly: max 3/6

Maulei	matics/P2	17 NSC - Memorandum	DoE/November 2008
5.1.2	$\frac{\tan x - 1}{2} = -3$ $\tan x - 1 = -6$ $\tan x = -5$ $x = -78,7^{\circ} + k.180^{\circ}$ $k \in Z$		✓ simplification ✓ simplification ✓ $-78,7^{\circ}$ ✓ $+k.180^{\circ}$ ✓ $k \in Z$
		OR	(5)
	$\frac{\tan x - 1}{2} = -3$ $\tan x - 1 = -6$		
	$\tan x = -5$ $x = 101.3^{\circ} + k.180^{\circ}$ $k \in Z$		
		OR	
	$\frac{\tan x - 1}{2} = -3$ $\tan x - 1 = -6$		
	$\tan x = -5$ $x = 101.3^{\circ} + k.360^{\circ}$		
	or $x = 281,3^{\circ} + k.360^{\circ}$ $k \in Z$		
		OR	
	If the candidate has used $tan(x-1) = -6 \mod 2/5$		
6.2.1	$\cos \beta = \frac{p}{\sqrt{5}}$ $x = p$ $r = \sqrt{5}$	n B	✓ third quadrant $ \checkmark y = -\sqrt{5 - p^2} $
	$r = \sqrt{5}$ $y = -\sqrt{5 - p^2}$ $\therefore \tan \beta = \frac{-\sqrt{5 - p^2}}{p}$	$-\sqrt{5-p^2}$	√√answer (4

Mathematics/P2	18 NSC - Memorandum	DoE/November 2008
$5.2.2 \cos 2\beta = 2\cos^2 \beta$ $= 2\left(\frac{p}{\sqrt{5}}\right)^2 - 1$ $= \frac{2p^2}{5} - 1$	7-1	$\checkmark 2\cos^2 \beta - 1$ $\checkmark \checkmark 2\left(\frac{p}{\sqrt{5}}\right)^2 - 1 \text{ or }$ $\frac{2p^2}{5} - 1$
	OR	(
$\cos 2\beta = 1 - 2\sin \theta$ $= 1 - 2\left(\frac{-\sqrt{5 - p}}{\sqrt{5}}\right)$ $= 1 - \frac{2(5 - p^2)}{5}$ $= \frac{2p^2 - 5}{5}$. M ₂	$\sqrt{1-2\sin^2\beta}$ $\sqrt{1-2}\left(\frac{-\sqrt{5-p^2}}{\sqrt{5}}\right)^2$ or $1-\frac{2(5-p^2)}{5}$ or $\frac{2p^2-5}{5}$
	OR	
$\cos 2\beta = \cos^2 \beta$ $= \left(\frac{p}{\sqrt{5}}\right)^2 - \left(\frac{-\sqrt{3}}{\sqrt{5}}\right)^2$ $= \frac{p^2}{5} - \frac{5 - p^2}{5}$ $= \frac{2p^2 - 5}{5}$		$\checkmark \cos^2 \beta - \sin^2 \beta$ $\checkmark \left(\frac{p}{\sqrt{5}}\right)^2$ $\checkmark \left(\frac{-\sqrt{5 - p^2}}{\sqrt{5}}\right)^2$ or $\frac{p^2}{5} - \frac{5 - p^2}{5}$ or $\frac{2p^2 - 5}{5}$

Mathematics/P2 OUESTION 8		20 NSC - Memorandum	DoE/November 200	
8.1	$\cos 3x = \sin x$ $\sin(90^{\circ} - 3x) = \sin x$	$x = -45^{\circ} - k.180^{\circ} \ k \in Z$	✓ equating ✓ 90° $-3x = x + k.360°$ ✓ $x = 22.5° - k.90°$ ✓ 90° $-3x = 180° - x + k.360°$ ✓ $x = -45° - k.180°$ ✓ y values of x	
		OR	,	
	$\cos 3x = \cos(90^{\circ} - x)$ $3x = 90^{\circ} - x + k.360^{\circ}$ $4x = 90^{\circ} + k.360^{\circ}$ or $x = 22,5^{\circ} + k.90^{\circ} k \in \mathbb{Z}$ $x = -67,5^{\circ}; 22,5^{\circ}; 112,5^{\circ}$	$x = 135^{\circ} + k.180^{\circ}$ $k \in \mathbb{Z}$	✓ equating $\sqrt{3}x = 90^{\circ} - x + k.360^{\circ}$ $\sqrt{x} = 22.5^{\circ} + k.90^{\circ}$ $\sqrt{3}x = 360^{\circ} - (90^{\circ} - x) + k.360$ $\sqrt{x} = 135^{\circ} + k.180^{\circ}$ $\sqrt{x} = \sqrt{x} = 135^{\circ} + k.180^{\circ}$	
		OR		
		$3x = -90^{\circ} - x + k.360^{\circ}$ or $2x = -90^{\circ} + k.360^{\circ}$ $x = -45^{\circ} - k.180^{\circ} k \in \mathbb{Z}$ $x = -45^{\circ}; 135^{\circ}$	✓ equating ✓ $3x = 90^{\circ} - x + k.360^{\circ}$ ✓ $x = 22,5^{\circ} - k.90^{\circ}$ ✓ $3x = -90^{\circ} + x + k.360^{\circ}$ ✓ $x = -45^{\circ} - k.180^{\circ}$ ✓ $x = -45^{\circ} - k.180^{\circ}$	
			Note: If not all 5 values for x is given, the following applies 4 or 3 values : 2 marks 2 values : 1 mark 1 value : 0 marks	

Mathema	NSC - Memorandun	DoE/November 2008
7.1	$\frac{3}{LB} = \tan 40^{\circ}$	
		✓ trig ratio
I	$LB = \frac{3}{\tan 40^{\circ}}$	
	$LB = 3.58 \mathrm{m}$ (3.5752)	✓ answer
(3	3,5 m; 3,57 m; 3,6 m)	(2)
	OR	
	LB 3	✓ sine rule
s	$\frac{LB}{\sin 50^{\circ}} = \frac{3}{\sin 40^{\circ}}$	
,	$LB = \frac{3\sin 50^{\circ}}{\sin 40^{\circ}}$	
		✓ answer
1	$LB = 3.58 \mathrm{m}$ (3.5752)	(2)
7.2	$AB^2 = AL^2 + BL^2 - 2.AL.BL.\cos 113^\circ$	✓ use of cos rule
1	$AB^2 = (5.2)^2 + (3.58)^2 - 2(5.2)(3.58)\cos 113^\circ$	✓ substitution ✓ $AB^2 = 54,4041m^2$
	$AB^2 = 54,40410138 \mathrm{m}^2$	✓ AB = 54,4041m
	AB = 7.38 m (7,37591)	answer
1.	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(4)
	Note:	Do not penalise if units
. 1	AB = 7.3 m or 7.4 m: accept	are omitted.
7.3		✓ formula
-	Area of $\triangle ABL = \frac{1}{2} AL.BL. \sin A\hat{L}B$	
	1 (5 2 × 3 58) -:- 1139	✓ substitution
	$=\frac{1}{2}(5.2)(3.58)\sin 113^{\circ}$	
	= 8.568059176	√√answer
	= 8,57 m	(4)
	Note:	
1	Area = 8,5 or 8,6 : accept	If cos ALB: 0/4
		[10]
		1 [10]

Mathematics/P2

22 NSC - Memorandum DoE/November 2008

QUESTION 9

Mean = $\frac{220}{10}$ = 22 minutes $\sqrt{\frac{\text{sum of min}}{\text{number of ru}}} \sqrt{\frac{\text{sum of min}}{\text{number of ru}}}} \sqrt{\frac{\text{sum of min}}{\text{number of ru}}}} \sqrt{\frac{\text{sum of min}}{\text{number of ru}}} \sqrt{\frac{\text{sum of min}}{\text{number of ru}}}} \sqrt{\frac{\text{sum of min}}{\text{number of ru}}} \sqrt{\frac{\text{sum of min}}{\text{number of ru}}}} \sqrt{\frac{\text{sum of min}}{number$	er of runner (only: 2/2
Time taken $(x-\overline{x})$ $(x_i-\overline{x})^2$ 18 -4 16 21 -1 1 16 -6 36 24 2 4 28 6 36 20 -2 4 22 0 0 29 7 49 19 -3 9 23 1 1 Sum 156 Answer only: 2	only: 2/2
18	only: 2/2
18	ng up of i correct
16	d correct
24 2 4 28 6 36 20 -2 4 22 0 0 29 7 49 19 -3 9 23 1 1 Sum 156 $\sigma = \sqrt{\sum (x, -\bar{x})^2} = \sqrt{156} = 3.95$ \checkmark substitution i	d correct
28 6 36 20 -2 4 22 0 0 29 7 49 19 -3 9 23 1 1 Sum 156 $x = \sqrt{\sum (x_i - \bar{x})^2} = \sqrt{156} = 3.95$ $x = \sqrt{3}$	d correct
20	d correct
22 0 0 0 29 7 49 19 -3 9 23 1 1 Sum 156 $(x_i - \overline{x})^2 = \sqrt{\frac{\sum (x_i - \overline{x})^2}{2}} = \sqrt{\frac{156}{3}} = 3.95$ \checkmark substitution i	d correct
29 7 49 19 -3 9 23 1 1 Sum 156 $(x_i - \overline{x})^2 = \sqrt{156} = 3.95$ \checkmark setting up of table and correct values in column $(x_i - \overline{x})^2$	d correct
$ \begin{array}{c ccccc} 29 & 7 & 49 \\ \hline 19 & -3 & 9 \\ \hline 23 & 1 & 1 \\ \hline Sum & 156 \end{array} $ table and correct values in colum $(x_i - \overline{x})^2$	d correct
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\frac{23}{\text{Sum}} \qquad \frac{1}{156}$ $\sigma = \sqrt{\sum (x, -\overline{x})^2} = \sqrt{\frac{156}{156}} = 3.95$ $\checkmark \text{ substitution i}$	
$\sigma = \sqrt{\frac{\sum (x_i - \overline{x})^2}{}} = \sqrt{\frac{156}{}} = 3.95$ \checkmark substitution i	
$\sigma = \sqrt{\frac{\sum (x_i - \overline{x})^2}{100}} = \sqrt{\frac{156}{100}} = 3,95$	
(If the candidate used a calculator to answer QUESTION 9.1 and QUESTION 9.2, award full marks if answers are correct.) If only one mistake in the calculation: 3 / 4 Answer only: 4 / 4 If candidate uses n − 1 in the formula, the answer	r (

Mathematics/P2

24 SC Mamazandar DoE/November 2008

QUESTION 11 11.1

✓✓ all points plotted correctly.

No penalty if the points are joined.

11.2	Exponential	✓ answer
	OR	Straight line: 0 / 1
	Quadratic	
	OR	
	Hyperbola	
	OR	
	Decreasing steeply then gradually. (Applicable descriptions are acceptable)	
11.3	Approximately 90 m	✓ answer

Mathematics/P2

23 NSC - Memorandum DoE/November 2008

QUESTION 10

10.1	Daily Sales (in Rand)	Frequency	Cumulative Frequency	
	60 ≤ rand < 70	5	5	✓ Frequency Column
	70 ≤ rand < 80	11	16	✓✓ cumulative
	80 ≤ rand < 90	22	38	frequencies
	90 ≤ rand < 100	13	51	(3
	100 ≤ rand < 110	7	58	
	110 ≤ rand < 120	3	61	If one wrong in the
				frequency column, deduct 1 mark.
10.2	70 60 - 50 - 50 - 50 - 50 - 50 - 50 - 50	er and December:	2007	✓ cumulative totals ✓ points at upper limits of intervals ✓ shape (3) If the ogive is NOT grounded, no penalty If plotted as the midpoint of the interval and the cumulative frequency: 2/3
10.3	Median = R 87 (Accept answers between 84 and	90)		✓ correctly read off ogive
10.4	R 96 ≤ sales ≤ R 120			√√correctly read of ogive (2
				[9

Mathematics/P2

25 NSC - Memorandum

DoE/November 2008

QUESTION 12

12.1	The median, the maximum scores, IQR Note: Any two statements that are valid in the context of the problem apply.	✓✓ any two of the list (2)
12.2	IQR = 90 - 72 = 18.	✓ formula ✓ answer
12.3	No. In the calculation of the median only the value in the middle of an ordered data set is of importance. The extreme values are not taken into account. In this case, 25% of the learners in Class A had a score of less than 66 marks. The minimum mark in Class B is 66 marks. Hence the performance of the two classes differ significantly,	Answer only: 2/2 V No V extreme values not taken into account V minimum marks different
	OR No. The one is skewed to the left and the other is skewed to the right. The extreme values are not taken into account.	(3)
	OR	
	No. The lower quartile of Class A is below the minimum of Class B. The extreme values are not taken into account.	
	OR	
	No. The left whisker of Class A is much longer than the left whisker of Class B. The extreme values are not taken into account.	

TOTAL: 150 marks

Grade 12 Education Supplement 2010

Together Educating the Nation

Maths Paper 01 Supplement 2010

Mathematics/P1

3 NSC

DoE/November 2008

(3)

QUESTION 1

Solve for x, rounded off to TWO decimal places where necessary:

 $x^2 = 5x - 4$ 1.1.1

x(3-x)=-31.1.2 (5)

1.1.3 $3-x<2x^2$ (5)

Determine the values of x and y if they satisfy both the following equations simultaneously: 2x + y = 3

 $x^2 + y + x = y^2$ (8)

Given x = 999 999 999 999, determine the exact value of $\frac{x^2 - 4}{x - 2}$ (3) Show ALL your calculations.

Explain why the equation $\frac{x^4+1}{x^4} = \frac{1}{2}$ has no real roots.

Copyright reserved

Please turn over

DoE/November 2008

QUESTION 2

Consider the sequence: $\frac{1}{2}$; 4; $\frac{1}{4}$; 7; $\frac{1}{8}$; 10; ...

If the pattern continues in the same way, write down the next TWO terms 2.1.1

(2) (7) 2.1.2 Calculate the sum of the first 50 terms of the sequence.

Consider the sequence: 8; 18; 30; 44; ...

Write down the next TWO terms of the sequence, if the pattern continues 2.2.1 in the same way.

(2) 2.2.2 Calculate the nth term of the sequence. (6)

Which term of the sequence is 330? [21]

QUESTION 3

Given the geometric series: $8x^2 + 4x^3 + 2x^4 + ...$

Determine the nth term of the series. (1)

3.2 For what value(s) of x will the series converge? (3)

Calculate the sum of the series to infinity if $x = \frac{3}{2}$.

Mathematics/P1

5 NSC

DoE/November 2008

QUESTION 4

The diagram below represents the graph of $f(x) = \frac{a}{x-p} + q$.

T(5;3) is a point on f.

4.1 Determine the values of a, p and q. (4)

If the graph of f is reflected across the line having equation y = -x + c, the new graph coincides with the graph of y = f(x). Determine the value of c. 4.2

[7]

Copyright reserved

Please turn over

Mathematics/P1

6 NSC

DoE/November 2008

(2)

(3) [1**5**]

QUESTION 5

5.2

Given: $h(x) = 4^x$ and $f(x) = 2(x-1)^2 - 8$.

Sketch the graphs of $\,h\,$ and $\,f\,$ on the diagram sheet provided. Indicate ALL intercepts with the axes and any turning points.

Without any further calculations, sketch the graph of $y = \log_4 x = g(x)$ on the same (2)

5.3 The graph of f is shifted 2 units to the LEFT. Write down the equation of the new

Show, algebraically, that $h\left(x+\frac{1}{2}\right)=2h(x)$. 5.4

QUESTION 6

Sketched below are the graphs of the functions $f(x) = \tan(x - 45^\circ)$ and $g(x) = 3\sin x$ for $x \in [-180^{\circ}; 180^{\circ}].$

6.1 Write down the equations of the asymptotes of y = f(x) for $x \in [-90^\circ; 180^\circ]$.

Describe the transformation of the graph of f to h if $h(x) = \tan(45^{\circ} - x)$. (2)

The period of g is reduced to 180° and the amplitude and y-intercept remain the same. Write down the equation of the resulting function.

Copyright reserved

6.2

Please turn over

(2)

(2)

NSC.

DoE/November 2008

(4)

QUESTION 7

- R1 570 is invested at 12% p.a. compound interest. After how many years will the 7.1 investment be worth R23 000?
- A farmer has just bought a new tractor for R800 000. He has decided to replace the tractor in 5 years' time, when its trade-in value will be R200 000. The replacement cost of the tractor is expected to increase by 8% per annum.
 - The farmer wants to replace his present tractor with a new one in 5 years' time. The farmer wants to pay cash for the new tractor, after trading in his present tractor for R200 000. How much will he need to pay? (3)
 - One month after purchasing his present tractor, the farmer deposited x rands into an account that pays interest at a rate of 12% p.a., 7.2.2 compounded monthly.
 - · He continued to deposit the same amount at the end of each month
 - At the end of 60 months he has exactly the amount that is needed to purchase a new tractor, after he trades in his present tractor.

(6)

Suppose that 12 months after the purchase of the present tractor and every 12 months thereafter, he withdraws R5 000 from his account, to pay for 7.2.3 maintenance of the tractor. If he makes 5 such withdrawals, what will the new monthly deposit be?

[17]

QUESTION 8

Determine f'(x) from first principles if $f(x) = -3x^2$. 8.1

(5)

Determine, using the rules of differentiation:

Show ALL calculations.

Copyright reserved

Please turn over

Mathematics/P1

9 NSC

DoE/November 2008

(2)

QUESTION 10

A drinking glass, in the shape of a cylinder, must hold 200 m ℓ of liquid when full.

- Show that the height of the glass, h, can be expressed as $h = \frac{200}{\pi r^2}$ 10.1 (2)
- Show that the total surface area of the glass can be expressed as $S(r) = \pi r^2 + \frac{400}{r^2}$. 10.2
- Hence determine the value of r for which the total surface area of the glass is a 10.3 [9]

Copyright reserved

OUESTION 9

Sketched below is the graph of $g(x) = -2x^3 - 3x^2 + 12x + 20 = -(2x - 5)(x + 2)^2$ A and T are turning points of g. A and B are the x-intercepts of g. P(-3;11) is a point on the graph.

Determine the length of AB

Determine the x-coordinate of T. 9.2

Determine the equation of the tangent to g at P(-3; 11), in the form y = ...9.3

Determine the value(s) of k for which $-2x^3 - 3x^2 + 12x + 20 = k$ has three distinct

9.5 Determine the x-coordinate of the point of inflection. DoE/November 2008

Mathematics/P1

DoE/November 2008

QUESTION 11

Amina owns a small factory that manufactures two types of cellular phones, namely Acuna and Matata cellular phones.

- Each Acuna cellular phone requires 10 manhours to manufacture and each Matata cellular phone requires 8 manhours to manufacture. Each Acuna cellular phone requires 3 manhours in the testing department and each Matata
- cellular phone requires 4 manhours in the testing department.
- The manufacturing department has a maximum of 800 manhours available per week.
- The testing department has a maximum of 360 manhours available per week.
 The factory needs to manufacture at least 60 of the Matata models each week.

Let x represent the number of Acuna cellular phones manufactured in one week.

Let y represent the number of Matata cellular phones manufactured in one week.

- 11.1 Write down the constraints, in terms of x and y, that represent the above-mentioned
- 11.2 Use the attached graph paper (DIAGRAM SHEET 2) to represent the constraints
- 11.3 Clearly indicate the feasible region by shading it.
- If the profit on one Acuna cellular phone is R200 and the profit on one Matata cellular phone is R250, write down an expression that will represent the profit, P, on 11.4
- Using a search line and your graph, determine the number of Acuna and Matata cellular phones that will give a maximum profit, assuming they are all sold out. 11.5
- Draw a search line on your graph. If the profit function for the factory was $P=180x\pm240y$, would there be any difference in the optimal solution? Give a reason for your answer. 11.6

[16]

TOTAL: 150

(3)

(5)

(1)

(3)

Copyright reserved

Please turn over

(2)

(4)

(5)

(3)

[18]

Copyright reserved

Maths Paper 01 Supplement 2010

DoE/November 2008 Mathematics/P1 EXAMINATION NUMBER: DIAGRAM SHEET 1 QUESTIONS 5.1 AND 5.2 Copyright reserved DoE/November 2008 INFORMATION SHEET: MATHEMATICS INLIGTINGSBLAD: WISKUNDE $x = \frac{-b \pm \sqrt{b^2 - 4ac}}$ $A = P(1+ni) \qquad \qquad A = P(1-ni) \qquad \qquad A = P(1-i)^n \qquad \qquad A = P(1+i)^n$ $\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} (a + (i-1)d) = \frac{n}{2} (2a + (n-1)d)$ $\sum_{i=1}^n a r^{i-1} = \frac{a \binom{r^n-1}{2}}{r-1} \quad ; \qquad r \neq 1 \qquad \qquad \sum_{i=1}^n a r^{i-1} = \frac{a}{1-r} \quad ; \quad -1 < r < 1$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$ $y = mx + c y - y_1 = m(x - x_1)$ $(x-a)^2 + (y-b)^2 = r^2$ In AABC: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $area \Delta ABC = \frac{1}{2}ab.\sin C$ $a^2 = b^2 + c^2 - 2bc.\cos A$ $\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$ $\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$ $\cos(\alpha + \beta) = \cos\alpha.\cos\beta - \sin\alpha.\sin\beta$ $\cos(\alpha - \beta) = \cos\alpha.\cos\beta + \sin\alpha.\sin\beta$ $\cos^2 \alpha - \sin^2 \alpha$ $\cos 2\alpha = \left\{1 - 2\sin^2\alpha\right\}$ $\sin 2\alpha = 2\sin \alpha.\cos \alpha$ $2\cos^2\alpha - 1$ $\sigma^2 = \frac{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}{n}$ $\overline{x} = \frac{\sum fx}{n}$ $P(A) = \frac{n(A)}{n(S)}$ $P(A \ or \ B) = P(A) + P(B) - P(A \ and \ B)$ $b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$ $\hat{y}=a+bx$ Copyright reserved

DIAGR	AM SHE	ET 2													
UEST	IONS 11	.2 ANI	0 11.3												
у															
															1
						+							\pm		
					H										
						+					+				
					Н		H								
0															
					H	Ŧ									
0															
											İ				
0 =															
.0															1

Copyright reserved

38

Maths Paper 01
Supplement 2010
Maths Paper 01 Supplement 2010 Exercise
CACT CISC

Together Educating the Nation

Maths Paper 01	
Supplement 20108	
Exercise	
CXCICISC	

Together Educating the Nation

42

DoE/November 2008

- Continued Accuracy will apply as a general rule.
 If a candidate does a question twice and does not delete either, only mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

	$x^{2} = 5x - 4$ $x^{2} - 5x + 4 = 0$ $(x - 4)(x - 1) = 0$ $x = 4 \text{ or } x = 1$	-1 for not equal to zero in this question only. If = 0 appears once in this question then full marks	✓ standard form = 0 ✓ factorisation ✓ both answers OR
			By the formula <pre> standard form = 0 substitution both answers</pre>
1.1.2	$x(3-x) = -3$ $3x - x^{2} = -3$ $x^{2} - 3x - 3 = 0$ $x = \frac{3 \pm \sqrt{(-3)^{2} - 4(1)(-3)}}{2(1)}$ $x = \frac{3 \pm \sqrt{21}}{2}$ $x = 3.79 \text{ or } x = -0.79$	- 1 for inaccurate rounding off for both answers.	✓ simplification ✓ standard form ✓ substitution into formula ✓ answers
	OR $x(3-x) = -3$ $3x-x^{2} = -3$ $-x^{2} + 3x + 3 = 0$ $x = \frac{-3 \pm \sqrt{(3)^{2} - 4(-1)(3)}}{2(-1)}$ $x = \frac{-3 \pm \sqrt{21}}{-2}$ $x = 3,79 \text{ or } x = -0,79$	- 1 for inaccurate rounding off for both answers.	✓ simplification ✓ standard form ✓ substitution into formula ✓ answers Note: If negative discriminant: max 2 / 5

Copyright reserved Please turn over

NSC - Memorandum	DoE/November 200
$(2x)^{2}$ $(2x + 4x^{2})$ $x = 3$	✓ $y = 3 - 2x$ ✓ substitution ✓ simplification of $(3 - 2x)^2$ ✓ standard form ✓ factorisation ✓ both x values ✓ y values (8)
$\frac{y}{2} = y^2$ $2y = 4y^2$ $y = -3$	$ √ x = \frac{3 - y}{2} $ ✓ substitution ✓ simplification of $ \left(\frac{3 - y}{2}\right)^{2} $ ✓ standard form ✓ factorisation ✓ both y values ✓ x values (8)
$y = x + 1$ $-2x = x + 1$ $x = \frac{2}{3}$ $y = \frac{5}{3}$	y = 3 - 2x ✓ common factor ✓ common bracket ✓ $y = -x$ ✓ $3 - 2x = -x$ ✓ both x-values ✓ y -values (8)
3	$y = y^{2}$ $y = y^{2}$ $-2y = 4y^{2}$ $y = -3$ $x = 3$ OR $y = 0$ $y = x + 1$ $3 - 2x = x + 1$ $x = \frac{2}{3}$

Please turn over Copyright reserved

Copyright reserved Please turn over

viameni	atics/P1 5 NSC – Memorandum	DoE/November 20
	$x = \frac{3 - y}{2}$	$\checkmark x = \frac{3 - y}{2}$
	$x^2 - y^2 + x + y = 0$	
	(x+y)(x-y) + (x+y) = 0	✓ common factor ✓ common bracket
	(x+y)(x-y+1) = 0	common orderer
	y = x + 1	$\checkmark y = -x$
	y = -x $y = -\frac{3-y}{2}$ $y = \frac{3-y}{2} + 1$ 2y = 3 - y + 2 2y = 3 - y + 2 2y = 3 - y + 2 y = -3 y = -3 $y = \frac{5}{3}$	$\checkmark y = -\frac{3-y}{2}$
	$y = \frac{1}{2} + 1$	
	$y = -\frac{1}{2}$ $2y = 3 - y + 2$	✓ both y-values ✓ ✓ x-values
	2y = -3 + y or $3y = 5$	v v x-values
	y = -3	(8
	$x=3$ $y=\frac{1}{3}$	
	$x=\frac{2}{3}$	
1.3	$\frac{x^2 - 4}{x - 2} = \frac{(x + 2)(x - 2)}{(x - 2)} = x + 2$	✓ factorisation
	$\frac{1}{x-2} = \frac{x}{(x-2)} = x+2$	✓ simplification
	Therefore when $x = 999 999 999$, the value is	
	999 999 999 999 +2 = 1 000 000 000 001.	✓ answer
		Note:
	OR	If candidate has
	$\frac{x^2 - 4}{x - 2} = \frac{(x + 2)(x - 2)}{(x - 2)} = x + 2$	substituted directly, 0/3 (answer would be
	x-2 $(x-2)999 999 999 999 = 10^{12} - 1$	1×10^{12} by
	y + 2 = 999,999,999,999 + 2	substitution)
	$= 10^{12} + 1$	Answer only: 2/3
		Correct answer but incorrect mathematics
		0/3
1.4	$\frac{x^4+1}{x^4}=1+\frac{1}{x^4}>1$ since $\frac{1}{x^4}>0$	✓ inequality
	$\frac{1}{x^4} = 1 + \frac{1}{x^4} > 1$ since $\frac{1}{x^4} > 0$	✓ conclusion
	$\therefore \frac{x^4+1}{x^4}$ can never be equal to $\frac{1}{2}$	(2
	x4	
	OR	
	$2x^4 + 2 = x^4$	
	$\frac{1}{x^4} = -\frac{1}{2}$	✓ equation
		✓ conclusion
	Which has no real solution since $\frac{1}{x^4} > 0$ for all $x \in R - \{0\}$	(2
	OR	
	O.K	

NSC - Memorandum	
$2x^{4} + 2 = x^{4}$ $x^{4} + 2 = 0$ $x^{4} + 0x^{2} + 2 = 0$	✓ calculation
$b^2 - 4ac = 0 - 4(1)(2)$ = -8 < 0 ∴ no real roots	$\checkmark \Delta < 0 \text{ or } \Delta = -8 $ (2)
$2x^4 + 2 = x^4$ $\therefore x^4 = -2$	✓ equation ✓ conclusion
Which has no real solution since $x^4 \ge 0$ for all $x \in R$	(2) [26]

QUESTION 2

2.1.1	$\frac{1}{16}$; 13	√√ answers (2)
2.1.2	$\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \text{ to 25 terms}\right)$ $\left(4 + 7 + 10 + 13 + \text{ to 25 terms}\right)$	✓ formula for geometric series
	$\frac{a(r^{n}-1)}{r-1} = \frac{n}{2} \left[2a + (n-1)d \right]$	$\frac{1}{2}\left(\left(\frac{1}{2}\right)^{25}-1\right)$
	$=\frac{\frac{1}{2}\left(\left(\frac{1}{2}\right)^{25}-1\right)}{2}$ $=\frac{25}{2}[2(4)+24(3)]$	$\frac{1}{2}$ -1
	$= \frac{2((2))}{\frac{1}{2}-1} = \frac{25}{2}[2(4)+24(3)]$	✓ answer for geometric series
	= 0,9999999 = 1 000	✓ formula for linear series
	$S_{50} = 1001,00$	$\checkmark \frac{25}{2} [2(4) + 24(3)]$
	OR	✓ 1000 ✓ answer
	$S_{50} = 25$ terms of 1 st sequence + 25 terms of 2 nd sequence	Note:
	$S_{50} = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \text{ so } 25 \text{ terms}\right) + \left(4 + 7 + 10 + 13 + \text{ so } 25 \text{ terms}\right)$	each series: max
	$S_{50} = \frac{\frac{1}{2} \left(\left(\frac{1}{2} \right)^{25} - 1 \right)}{\frac{1}{2} - 1} + \frac{25}{2} \left[2(4) + 24(3) \right]$	5/7 (answer then is 3876)
		Answer only: 6 / 7 Write out series
	$S_{50} = 0.999999 + 1000$ $S_{50} = 1001,00$	and then correct answer: full marks
		Write out both series and not add
		them: 6/7

Copyright reserved them: 6/7
Please turn over

Mathematics/P1	NSC – Memorandum	DoE/November 200
T_0 T_1 T_2 0 8 18 8 10 1 $T_0 = 0$ $a(0)^2 + b(0) + c = 0$ $c = 0$ constant second differon in the second difference in the s	T_4 T_5 30 44 2 14 2 rence = 2 $a = 1$	✓ finding T_0 ✓ $c = 0$ ✓ second difference = 2 ✓ $a = 1$ ✓ substitution ✓ $b = 7$ (6)
$T_n = n^2 + 7n$ $T_n = n(n+7)$		
$T_n = \frac{n-1}{2} \left[2(first \ first$ $T_n = \frac{n-1}{2} \left[2(10) + (n-1) + (n-1$	(n-1)+8	
	OR $2)T_{1} + 2nd \ difference \frac{(n-1)(n-2)}{2}$ $-2)(8) + 2\frac{(n-1)(n-2)}{2}$ $16 + n^{2} - 3n + 2$ OR	✓✓ formula ✓✓ substitution ✓ simplification ✓ answer (6

DoE/November 2008 2.2.1 60;78 ✓ answers 2.2.2 8 $\checkmark a=1$ 2a = 2a. a = 1 $T_n = n^2 + bn + c$ 8 = 1 + b + c $7 = b + c \qquad ...(i)$ 18 = 4 + 2b + c $14 = 2b + c \qquad ...(ii)$ $(ii) - (i): \qquad 14 = 2b + c$ 7 = b + c $\therefore 7 = b$ c = 0✓ substitution ✓ solving simultaneously $\begin{array}{c} \checkmark b = 7 \\ \checkmark c = 0 \end{array}$ ✓ general term $T_1 = 8$ $T_2 - T_1 = 10$ $T_3 - T_2 = 12$ $\checkmark T_1 = 8$ $\checkmark T_2 - T_1 = 10$ $\checkmark T_3 - T_2 = 12$ $\checkmark Add both sides$ $T_n - T_{n-1} = n$ th term of sequence with a = 8 and d = 2Add both sides $T_n = 8 + 10 + 12 + ... + to 25 \text{ terms}$ $T_n = \frac{n}{2}[16 + 2(n-1)]$ $T_n = n(n+7)$ ✓ sequence ✓ substitution (6) OR

// // // // // // // // // // // // //	NSC - Memorandum	
$T_n = \frac{(n^2 - 5n + 6)(8) - 6}{(n^2 - 5n + 6)(8)}$	$\frac{2(n-1)(n-3)T_2 + (n-2)(n-1)T_3}{2}$ $\frac{2}{2(n^2 - 4n + 3)(18) + (n^2 - 3n + 2)(30)}$ $\frac{2}{18n^2 + 72n - 54 + 15n^2 - 45n + 30}$	✓ formula ✓✓ substitution ✓✓ simplification ✓ answer (6)
T, = 8 = 1.8	OR	observation ✓ answer
$T_2 = 18 = 2.9$ $T_3 = 30 = 3.10$ $T_4 = 44 = 4.11$ $T_n = n^2 + 7n$		Note: By trial and error: 6/6 Answer only: 6/6
2.2.3 $n(n+7) = 330$ $n^2 + 7n - 330 = 0$ (n+22)(n-15) = 0 n = -22 or $n = 15n = 15\therefore 15th term is 330.$	Note: 3/4 if did not reject $n = -22Answer only: 4/4By trial and error and then write n = 15:4/41/4 if just equate T_n that they foundIf linear T_n and valid answer: 2/4$	✓ substitution ✓ standard form ✓ factorisation ✓ answer (4)

Copyright reserved

Copyright reserved

Please turn ove

Please turn over

Mathematics/P1		10 NSC – Memorandum	DoE/November 2008
QUE:	STION 3		
3.1	$T_n = \left(8x^2\right)\left(\frac{x}{2}\right)^{n-1}$	OP	✓ answer (1)
	$T_n = 8\left(\frac{1}{2}\right)^{n-1}.x^{n+1}$	OR	
		OR	
	$T_n = 16x \left(\frac{x}{2}\right)^n$ $T_n = 2^{4-n} x^{n+1}$ $ratio = \frac{x}{2}$	OR	
3.2			✓ ratio
	$-1 < \frac{x}{2} < 1$ $-2 < x < 2$		✓ inequality
	-2 < x < 2		✓ answer
3.3	$S_{\infty} = \frac{a}{1 - r}$		✓ substitution into formula for S _∞
	$S_{\infty} = \frac{8x^2}{1 - \frac{x}{2}}$ $= (3)^2$		\checkmark substitution of $x = \frac{3}{2}$
	$S_{\omega} = \frac{8\left(\frac{3}{2}\right)^2}{1 - \frac{1}{2}\left(\frac{3}{2}\right)}$		✓ answer
	S _* = 72	OR	
	$18 + \frac{27}{2} + \frac{81}{8} + \dots$		✓ series
	$S_{\infty} = \frac{18}{1 - \frac{3}{4}}$		✓ substitution
	$S_{\infty} = \frac{18}{\frac{1}{4}}$		✓ answer (3) Formula Incorrect:
	$S_{\infty} = 72$		0 / 3 [7]

Copyright reserved

Mathemati	cs/P1 12 NSC – Memorandum	DoE/November 2008
5.1 & 5.2 5.2	3 -1 1 3 -1 1 1 3 4 (1;-8)	EXPONENTIAL
	Calculation of x-intercepts of parabola $0 = 2(x-1)^{2} - 8$ $0 = 2(x-1)^{2} - 8$ $0 = 2(x-1)^{2} - 8$ $0 = 2(x^{2} - 2x + 1) - 8$ $0 = 2x^{2} - 4x - 6$ $0 = x^{2} - 2x - 3$ $0 = (x-3)(x+1)$ $0 = x^{2} - 3x - 3$ $0 = (x-3)(x+1)$ $0 = x^{2} - 3x - 3$ $0 = (x-3)(x+1)$ $0 = x^{2} - 3x - 3$	
5.3	$y = 2(x+1)^2 - 8$ OR $y = 2x^2 + 4x - 6$	✓ -8 ✓ +1 (2) ✓ -6 ✓ +4
		(2)

Please turn over Copyright reserved

	natics/P1 11 NSC – Memorandum STION 4	DoE/November 2008
4.1	p = 4 $q = 2$	✓ answer p ✓ answer q
	$3 = \frac{a}{5-4} + 2$	✓ substitution of (5; 3)
	$1 = \frac{a}{1}$ $a = 1$	✓ answer (4) Answer for p 1 mark Answer for q 1 mark
		Answer for a 2 marks
4.2	y = -x + c substitute (4; 2) $2 = -4 + c$	✓ correct point (4;2) ✓ substitution
	c = 6	✓ answer
	OR	(3)
	Translation of the line $y = -x$ 2 units up and 4 units right $y = -(x-4) + 2$ $y = -x + 6$	✓ substitution of $x - 4$ ✓ adding 2 ✓ answer (3)
		Substitution of T(3;5): 0/3 Answer only: 3/3
		Answer only: 3 / 3

Mathematics/P1	13 NSC – Memorandum	DoE/November 200
$h\left(x+\frac{1}{2}\right) = 4^{x+\frac{1}{2}}$		✓ substitution
$= 4^{x} \cdot 4^{\frac{1}{2}}$ $= 2(4^{x})$		$\checkmark 4^{x}.4^{\frac{1}{2}}$ $\checkmark 2(4^{x})$
=2h(x)		(3)
$h\left(x+\frac{1}{2}\right)=4^{x+\frac{1}{2}}$	OR	✓ substitution
$h\left(x+\frac{1}{2}\right) = 4^{\frac{x+\frac{1}{2}}{2}}$ $= (2^2)^{x+\frac{1}{2}}$ $= 2^{2x+1}$		✓ substitution $✓ (2^2)^{x-\frac{1}{2}}$ $✓ 2(4^x)$
$=2^{2x}.2$		(3)
$= 2.(4^{x})$ $= 2h(x)$		Note: If numerical examples are used: 1/3
		[15]

Copyright reserved

Please turn over

[7]

Copyright reserved

Mather	natics/P1	14 NSC – Memorandum	DoE/November 2008
QUES	STION 6	NSC - Welloraldan	
6.1	$x = -45^{\circ}$ $x = 135^{\circ}$		✓ answer ✓ answer (2) Note: If correct numbers but not writing as an equation 1/2
6.2	$h(x) = \tan(45^{\circ} - x)$ $h(x) = -\tan(x - 45^{\circ}) = -f(x)$ h is the reflection of f about h is the reflection of f about	the x-axis	If units left out: $2/2$ If units left out: $2/2$ If reflection about x -axis (2) Note: If calculation only: $1/2$ If answer is: Reflection only: $0/2$ If do calculation and say reflection: $1/2$ Only $h(x) = \tan(45^\circ - x)$ $h(x) = -\tan(x - 45^\circ) = -f(x)$ $1/2$
6.3	$y = 3\sin 2x$		√3 √2x (2) [6]

Copyright reserved

Please turn over

Mathematics/P1	16 NSC – Memorandum	DoE/November 2008
$975462,46 = x \frac{[1.0]}{0}$ $975462,46 = 81,66$ $x = R 11944,00$		✓ F = R975462,46 ✓ $n = 60$ ✓ $i = 1,01$ ✓ formula ✓ simplification ✓ answer (6)
		Note: Continued Accuracy applies.

722	1 (
7.2.3	$Service = [5000(1,01)^{48} + 5000(1,01)^{36} + 5000(1,01)^{24} + 5000(1,01)^{12} + 5000]$	✓✓ 32 197,77
	= 32197,77	✓ setting up of
	$975462,46 = x \frac{[1,01]^{60} - 1}{0.01} - Service$	correct
	$9/3462,46 = x = \frac{-3}{0,01} - Service$	equation
	975462,46 = 81,66966986x - 32197,77	✓ answer
	x = R 12338.24	(4)
	OR	8
	$Service = \frac{5000[1,01^{60} - 1]}{1.01^{12} - 1}$	✓✓ 32 197,77
		✓ setting up of
	= 32197,77	correct
	$975462,46 = x \frac{[1,01]^{60} - 1}{0.01} - Service$	equation
	0,01	✓ answer
	975462,46 = 81,66966986x - 32197,77	(4)
	x = R12338,24	
	OR	
	D = 0.000	
	Present Value payment of R 5000 = $5000\{(1,01)^{-12} + (1,01)^{-24} + (1,01)^{-36} + (1,01)^{-48} + (1,01)^{-60}\}$	
		✓ 17723,25
	$=5000(1,01)^{-12} \left\{ \frac{1 - (1,01)^{-60}}{1 - (1,01)^{-12}} \right\}$	✓ 554666,19
	= R 17 723,25	✓ setting up of
	Present Value of the sinking fund	correct
	$=975462,46(1,01)^{-60}$	equation
	= R 536 942,94	
	Total Value of sinking fund	✓ answer
	= R 17 723,25 + R 536 942,94	(4)
	= R 554 666,19	\ ''
	$554666,19 = x \left\{ \frac{1 - (1,01)^{-60}}{0,01} \right\}$	
	x = R 12 338,24	10
1	OR	
Convriet	treserved	Please turn over

Copyright reserved

Please turn over

QUESTION 7

Penalise ONCE in question 7 for early rounding off.

7.1	$A = P(1+i)^n$		✓ formula ✓ substitution
	$23000 = 1570(1.12)^n$		▼ substitution
	$(1.12)^n = 14,64968153$		✓ apply log function
	$n \log(1,12) = \log 14,64968153.$		✓answer (4)
	n = 23,69 years	(23,68701)	(4)
	or $n = 24$ years		
	or $n = 23$ years 8 months or $n = 23,7$ years	N	
		Note:	
	OR	Accept 24 years: 4/4	
	$A = P(1+i)^n$	Incorrect Formula: 0/4	✓ formula
	1 1		
	$23000 = 1570(1 + \frac{12}{100})^n$		✓ substitution of $\frac{12}{100}$
	$(1.12)^n = 14,64968153$		✓ apply log function
	$n\log(1,12) = \log 14,64968153.$		✓answer
	n = 23,69 years	(23,68701)	(4)
	or $n = 24$ years		
	or $n = 23$ years 8 months or $n = 23.7$ years		
	01 /1 25,7 years		
7.2.1	$A = P(1+i)^n$		✓ substitution
	$=800000(1.08)^{5}$		✓ R 1 175 462,46
	= R1175462,46		,
	∴ R1175462,46 – R200 000		✓ R 975 462,46
	= R975462,46		(3)
	Some calculators give R 975	462,50	
			Incorrect Formula: 0/3
7.2.2	$-x[(1+i)^n-1]$		✓ F = R975462,46 or
	$F = \frac{x[(1+i)^n - 1]}{i}$ $975462,46 = x \frac{[1,01]^{60} - 1}{0,01}$		answer in 7.2.1 $\checkmark n = 60$
	$0.7546246 - x[1,01]^{60} - 1$		$\checkmark n = 60$ $\checkmark i = 1.01$
			✓ formula
	$\frac{975462,46\times0.01}{[1,01]^{60}-1}=x$		✓ simplification ✓ answer
			(6)
	x = R 11944,00		

Copyright reserved Please turn over

Mathematics/P1	17 NSC – Memorandum	DoE/November 2008
	3	✓ substitution into formula ✓ 32 197,77 ✓ setting up of correct equation ✓ answer R 12 338,24
$5000 = \frac{x[(1,01)^{12}}{0,01}$ $x = \frac{5000 \times 0,01}{1,01^{12} - 1}$ $x = 394,24$ So monthly deponent monthl	osit must be increased by R 394,24	✓ substitution into formula ✓ 394,24 ✓ setting up of correct equation ✓ answer R 12 338,24 (4)
		[17

Copyright reserved

Please turn over

Mathemati	cs/P1	18 NSC – Memorandum	DoE/November 2008
QUEST	ION 8	NSC – Memorandum	
8.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h)}{h}$ $= \lim_{h \to 0} \frac{-3(x+h)}{-3x^2 - 6}$ $= \lim_{h \to 0} \frac{-6xh - 3}{h}$ $= \lim_{h \to 0} \frac{h(-6x - 3h)}{h}$ $= -6x$	$\frac{(3)^{2} - (-3x^{2})}{h}$ $\frac{h}{h}$ $\frac{h^{2}}{h}$	✓ definition $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$ ✓ $-3(x+h)^2$ ✓ substitution of $-3x^2$ ✓ correct answer (5) Note: Penalty 1 for incorrect notation If a candidate has used the rules only: 0/5
8.2	$y = \frac{\sqrt{x}}{2} - \frac{1}{6x^3}$ $y = \frac{1}{2}x^{\frac{1}{2}} - \frac{1}{6}x^{-3}$ $\frac{dy}{dx} = \frac{1}{4}x^{-\frac{1}{2}} + \frac{3}{6}x^{-4}$ $\frac{dy}{dx} = \frac{1}{4}x^{-\frac{1}{2}} + \frac{1}{2}x^{-4}$ $\frac{dy}{dx} = \frac{1}{4\sqrt{x}} + \frac{1}{2x^4}$	Note: If removed coefficients, or moved the numbers from the denominator to the numerator: Continued accuracy applies for each correct derivative Max $2/3$ If leave out $\frac{dy}{dx}$ penalise 1 mark.	Simplification $ \sqrt{\frac{1}{4}x^{-\frac{1}{2}}} $ $ \sqrt{\frac{1}{2}x^{-4}} \text{ or } \frac{3}{6}x^{-4} $ (3)

Copyright reserved

Please turn over

r

Please turn over

DoE/November 2008

(3)

(3)

(4)

✓ y-coordinate of T (27)

√ √ answer

 $\checkmark -7 < 20 - k < 20$ $\checkmark \checkmark$ answer

Answer Only: 3/3 $0 \le k \le 27$: 2/3 k > 0: 1/3k < 27: 1/3

 $\begin{array}{l} \checkmark - 12x \\ \checkmark - 6 \\ \checkmark = 0 \end{array}$

 $\checkmark x = -\frac{1}{2}$

✓ points

 $\checkmark \checkmark x = -\frac{1}{2}$

Mathemat	ics/P1 19 NSC – Memorandum	DoE/November 2008
QUEST		
9.1	-(2x-5)(x+2) = 0	$\checkmark x = \frac{5}{2}; x = -2$
	$x = \frac{5}{2}or - 2$	2,
	2 AB = 4.5 units	✓ answer
	NAME OF THE OWNER	(2)
	OR	
	-(2x-5)(x+2) = 0	
	$x = \frac{5}{2}or - 2$	5 2
	2	$\checkmark x = \frac{5}{2}; x = -2$
	$AB = \sqrt{(2.5 - (-2)^2 + (0 - 0)^2)^2}$	✓ answer
	AB = 4.5 units	(2)
9.2	-//-> 0	$\checkmark g'(x) = 0$
9.2	$g'(x) = 0$ $-6x^2 - 6x + 12 = 0$	$\checkmark g'(x) = -6x^2 - 6x + 12$
	-6x - 6x + 12 = 0 $x^2 + x - 2 = 0$	g (x) = 0x 0x 12
	(x+2)(x-1) = 0	√ factorisation
	x=-2 or $x=1$	✓ answer
	at T: $x = 1$	(4)
9.3	$g'(x) = -6x^2 - 6x + 12$	✓ g'(-3)
	$g'(-3) = -6(-3)^2 - 6(-3) + 12$	
	g'(-3) = -54 + 18 + 12	√ - 24
	g'(-3) = -24 $y = ax + q$	✓ method of setting up
	y = ax + q 11 = -24(-3) + q	straight line equation
	q = -61	✓ substitution of point
	y = -24x - 61	(-3; 11) ✓ answer in equation form
	y = -24x = 01	answer in equation form
	OR	
	$g'(x) = -6x^2 - 6x + 12$	✓ g'(-3)
	$g'(-3) = -6(-3)^2 - 6(-3) + 12$	
	g'(-3) = -54 + 18 + 12	✓ - 24
	g'(-3) = -24	7 - 24
	y-11=-24(x+3)	✓ formula
	y-11 = -24x-72	✓ substitution of point (-3; 11)
	y = -24x - 61	✓ answer in equation form (5

Mathema	tics/P1 21 NSC – Memorandum	DoE/November 2008
QUEST	TON 10	
10.1	$V = \pi r^2 h$ $200 = \pi r^2 h$	✓ formula ✓ substitution
	$h = \frac{200}{\pi r^2}$	(2)
10.2	Surface Area = $2\pi rh + \pi r^2$	✓ formula
	$S(r) = \pi r^2 + \frac{200}{\pi r^2} \cdot 2\pi r$	✓ substitution
	$S(r) = \pi r^2 + \frac{400}{r}$ $S(r) = \pi r^2 + 400r^{-1}$	(2)
10.3	$S(r) = \pi r^2 + 400r^{-1}$	✓ exponents correct
	$\frac{dS}{dr} = 2\pi r - 400r^{-2}$ At minimum: $\frac{dS}{dr} = 0$	$\checkmark \frac{dS}{dr} = 2\pi r - 400r^{-2}$ $\checkmark \frac{dS}{dr} = 0$
	$2\pi r - \frac{400}{r^2} = 0$ $\pi r^3 - 200 = 0$	$\checkmark r^3 = \frac{200}{\pi}$ $\checkmark r = 3,99 \text{ or}$
	$r^3 = \frac{200}{\pi}$ $r = 3,99 \text{ cm}$	$r = \sqrt[3]{\frac{200}{\pi}}$
		Note: If did not put = 0, penalise 1 mark
		If notation is $\frac{dy}{dx}$, ignore
		notation.

20 NSC – Memorandum

OR

g''(x) > 0

y-coordinate of T is

= 27 T(1; 27)

 $\therefore 0 < k < 27$

-7 < 20 - k < 20

 $g'(x) = -6x^{2} - 6x + 12$ g''(x) = -12x - 6

g''(x) < 0

g''(x) changes sign at $x = -\frac{1}{2}$ \therefore point of inflection at $x = -\frac{1}{2}$

 $x = -\frac{-2+1}{2} = -\frac{1}{2}$

Copyright reserved

Turning points A(-2;0); T(1;27) Now x co-ordinate of point of inflection is

-27 < -k < 00 < k < 27

12x + 6 = 0 $x = -\frac{1}{2}$

 $g(1) = -2(1)^3 - 3(1)^2 + 12(1) + 20$

 $-2x^3 - 3x^2 + 12x + 20 = k$ $-2x^3 - 3x^2 + 12x + 20 - k = 0$

Copyright reserved

Please turn over

Mathema	ntics/P1 22 NSC – Memorandum	DoE/November 200
QUEST	TION 11	
11.1	$ \begin{aligned} 10x + 8y &\le 800 \\ 3x + 4y &\le 360 \\ y &\ge 60 \\ x, y &\in N_0 \end{aligned} $	✓ answer ✓ answer ✓ answer (3)
11.2 & 11.3	See attached graph (5) See attached graph (1)	11.2 $ \checkmark y = -\frac{3}{4}x + 90 $ $ \checkmark y = -\frac{5}{4}x + 100 $ $ \checkmark y = 60 $ (5) 11.3 $ \checkmark \text{ feasible region} $ (1) Note: If shading only, and did not state feasible region 1/1
11.4	P = 200x + 250y	✓ answer
11.5	$250y = -200x + P$ $y = -\frac{4}{5}x + \frac{P}{250}$ Maximum at (20; 75)	✓ gradient ✓ search line ✓ answer (3) Note: Read correctly from the candidate's graph for the point for maximum profit. If used vertices method: 1/3 for accurate answer.
11.6	$m = -\frac{3}{4}$ Since the gradient of the new profit function is equal to the gradient of the constraint $3x + 4y \le 360$, there are points other than (20; 75) that give an optimal solution.	$\sqrt{m} = -\frac{3}{4}$ \sqrt{m} more points in optimal solution (more than one solution) Note: If just answer Yes 0/3 If just answer No 0/3

Copyright reserved

ATATAM