PUBLIC EXAMINATIONS

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

6 NOVEMBER 2011

FINAL MEMORANDUM

MARKS: 150

This memorandum consists of 20 pages.

SYMBOL	EXPLANATION
A	Accuracy
_CA	Consistent accuracy
C	Conversion
J	Justification (Reason/Opinion)
	Method
MA	Method with accuracy
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
RT/RG	Reading from a table/Reading from a graph
S	Simplification
SF	Correct substitution in a formula
Ó	Own opinion/Example

EXTERNAL MODERATOR
MR RI SINGH
06 NOVEMBER 2011

UMALUSI EXT. MODERATOR R, I. SINGH INTERNAL MODERATOR
MRS J SCHEIBER
06 NOVEMBER 2011

2 NSC – Final Memorandum

DBE/6 November 2011

Ques	Solution	Explanation	AS
1.1.1	Salary = $R750 \times number$ of days worked OR Salary = $R750 \times n$, where n is the number of days worked	1A R750 1A multiplying by number of working days	12.2.
_	OR $ \checkmark A \checkmark A $ Salary = R750n, where n is the number of days worked	(Max 1 mark if NOT one term. No penalty if rand symbol left out)	
1.1.2	SALARY FOR POSITIONS		-
	16 000 ABC	ligs	12.2.2
	14 000	✓CA 1CA (1;3 500) ✓CA plotted correctly	
	12 000	SA 1CA (2; 4 000) or any	
	10 000	other correct point plotted correctly 1CA (20; 13 000)	
	8 000 CA	1CA joining points	
	6 000	1A correct label for either graph	
	4 000	color graph	
	2 000	1CA (1; 750) 1CA (20; 15 000)	
	0 CA 5 10 15 20	1CA joining points	
	Number of days worked	Penalty 1 mark if Y-axis is joined	
		(8)	12.2.3
1.3(a)	12 days✓✓RG	2 RG reading from graph plotted	12.2.3

NSC - Final Memorandum

Ques	Solution	Explanation	AS
1.1.3(b)	16 days ✓✓RG OR	2RG reading from graph plotted	12.2.3
	Salary (Meds) = R3 000 + R500 × 18 = R12 000 ✓M ∴ R750 × number of days worked = R12 000 Number of days = 16 ✓A	1M calculating salary 1A number of days (2)	
1.2.1	Total extra distance travelled = $20 \times 2 \times 40 \text{ km}^{\checkmark}\text{M}$ = $1600 \text{ km}^{\checkmark}\text{A}$	1A number of days and trips 1M extra distance/trip 1A total distance Penalty 2 marks if	12.2.1 12.1.1
	Extra petrol needed = $1600 \text{ km} \times 7.5 \ell \div 100 \text{ km} \checkmark M$ = $120 \ell \checkmark \text{CA}$	one way distance calculated 1M multiplying and dividing	
	Extra cost = petrol cost + maintenance cost $ \checkmark M $ = $120 \ell \times R9,82 + 1600 \times R0,70 \checkmark CA$ = $R1\ 178,40 + R1\ 120,00$	1CA extra petrol needed 1M petrol cost 1CA maintenance	
	= R2 298,40 ✓CA OR	1CA simplification	
	Extra cost per single trip $= 40 \text{ km} \times 7.5 \ell \div 100 \text{ km} \times \text{R}9.82/\ell \checkmark \text{A}$ $= \text{R}29.46 \checkmark \text{A}$	1M multiplying and dividing 1A using petrol cost 1A extra petrol cost	
	Extra maintenance cost per single trip = $40 \text{ km} \times \text{R0},70/\text{km}$ = $R28,00 \checkmark \text{A}$	1A using maintenance cost 1A extra maintenance cost	
	Total extra cost per single trip = R29,46 + R28,00 = R57,46 ✓ CA	1CA cost per single trip	
	Total extra cost for 2 trips = $2 \times 20 \times R57,46$ = $R2\ 298,40 \checkmark CA$ OR	1A number of days and trips 1CA simplification	

4 NSC – Final Memorandum

DBE/ 6 November 2011

Ques	Solution	Explanation	AS
	OR Extra cost	1A number of days and trips 1M extra distance/trip 1M multiplying and dividing 1A petrol needed 1A petrol cost 1A distance maintenance cost 1A maintenance cost 1CA simplification	
		Answer only full marks	
1.2.2	He should accept the job at Meds SA. CA He will earn R2 000 more per month at ABC Cigs, but will have to pay R2 298,40 more per month for travel.	1CA choice 1CA difference in salary 2J justification	12.4.4
	OR		
	✓CA ✓CA ✓CA ✓J He must choose Meds SA because he earns R298,40 more	(4)	
1.2.3	✓✓J The manager is generalizing results from a misleading graph.	2J justification	12.4.6
	The graph provides no time comparison and thus there is no annual decrease in the number of deaths due to cigarette smoking.	2J justification	
	OR		
	The manager is generalizing results from a misleading graph.	2J justification	
	The graph shows the percentage of deaths per type of disease arranged in a descending order and thus does not show a decrease in the number of annual deaths due to cigarette smoking.	2J justification	
		(4)	

5 NSC – Final Memorandum

Gail's rate = $\frac{R750}{2.751}$ \checkmark M	Explanation	AS
Gail's rate = $\frac{16750}{3,75 \text{ hours}}$ \checkmark M = R200,00 per hour \checkmark A	1RT reading from the table 1M finding the rate 1A Gail's rate	12.1. 12.1.
TBOS' rate = $\frac{R400}{2,5 \text{ hours}}$ = R160 per hour \checkmark A	1A TBOS' rate	
Dong's rate = $\frac{R700}{3,5 \text{ hours}}$ = R200 per hour \checkmark A Her statement is incorrect \checkmark CA	1A Dong's rate 1CA conclusion (Accept a similar	
OR	statement)	
Gail's cost for 3,75 hours = $\frac{\sqrt{A}}{2,5 \text{ hours}}$ $\frac{\sqrt{A}}{\sqrt{A}}$ $\frac{\sqrt{A}}{\sqrt{A}}$ TBOS' cost for 3,75 hours = $\frac{R400}{2,5 \text{ hours}}$ $\frac{\sqrt{A}}{\sqrt{A}}$ $\frac{\sqrt{A}}{\sqrt{A}}$	1A Gail's rate 1M dividing 1A correct values	
$= R600,00 \checkmark_{CA}$	ICA TBOS' rate	
Dongs cost for 3,5 hours = R700,00 ✓A ∴ Her statement is incorrect ✓CA	1A Dong's rate	
	1CA conclusion	
	maximum 2 marks if only a correct conclusion is made without calculations	
	Dong's rate = $\frac{R700}{3,5 \text{ hours}}$ = R200 per hour \checkmark A Her statement is incorrect \checkmark CA OR Gail's cost for 3,75 hours = $\frac{R400}{2,5 \text{ hours}} \times \frac{1}{2,5 hour$	Dong's rate = R700 3,5 hours = R200 per hour ✓A ∴ Her statement is incorrect ✓CA Gail's cost for 3,75 hours = R750,00 TBOS' cost for 3,75 hours = R400 2,5 hours = R600,00 ✓CA Dongs cost for 3,5 hours = R700,00 ∴ Her statement is incorrect ✓CA LA Gail's rate IM dividing IA correct values IA Gail's rate IM dividing IA correct values ICA TBOS' rate 1A Dong's rate IA Gail's rate IM dividing IA correct values IA TBOS' rate IA Gail's rate IM dividing IA correct values IA TBOS' rate IA Gail's rate

6 NSC – Final Memorandum

Ques	Solution	Explanation	AS
2.1.2			12.1.1
2.1.2	Total excluding VAT \times 114% = R9 497,93	1M division	
	Total excluding VAT = $\frac{R9497,93}{114\%} \checkmark M$	1A percentage	
	114% ✓A	including VAT	
	= R 8 331,52 ✓A	1A total excl VAT	
	Total cost of parts and labour from table		
	= R6 599,53 + R1 600,00		
	= R 8 199,53 ✓A	IA total cost	
	∴ Cost of Sundries and consumables		
	$= R8331,52 - R8199,53 $ $\checkmark M$	1M subtracting	
	= R131,99 ✓CA	1CA simplification	
	OR		
	Total costs including VAT = R9 497,93		
	Labour and Spares excluding VAT = R6 599,53 + R1 600,00		
	= R8 199,53 ✓A	1A total cost	
	Labour and Spares including VAT = R8 199,53 × 1,14 M	1M including VAT	
	= R9 347,46 ✓A	1A amount including	
		VAT	
	Sundries and Consumables including VAT		
	= R9 497,93 - R9 347,46		
	= R150,47 ✓CA	1CA amount	
		including VAT	
	Sundries and Consumables excluding VAT = $\frac{R150,47}{114\%}$ \checkmark M	1M division by 114%	
	= R131,99 ✓CA		
		1CA simplification	
		(6)	

NSC - Final Memorandum

DBE/6 November 2011

Ques	Solution	Explanation	AS
2.2.1	Graph Y \(\sqrt{A} \) We know this because Graph Y passes through the point (2,5; 400) \(\text{OR} \) (1; 160) \(\sqrt{RG} \) OR explanation in words	1A identifying correct graph 1RG any correct point used in explanation	12.2.3
	OR explanation in words	(2)	
2.2.2	Graph X: for R640 time taken is 3,2 hours, ✓RG	1RG reading correct time from the graph (Accept 3,15 to 3,25)	12.2.3
	Graph Y: for R640 time taken is 4 hours ✓RG	1RG reading correct time from the graph (Accept 3,95 to 4,05)	
	Difference in time = 4 hours - 3,2 hours \checkmark M = 0,8 hours \checkmark CA = 0,8 × 60 minutes = 48 minutes \checkmark C	1M subtraction 1CA difference in hours (Accept 0,7 to 0,9) 1C converting to minutes	
	OR	(Accept 42 minutes to 54 minutes)	
	✓M ✓C Difference in time = 4 × 60 minutes – 3,2 × 60 minutes = 240 minutes – 192 minutes = 48 minutes ✓CA	OR 1M subtraction 1C converting to minutes 1CA difference in minutes (5)	
2.3.1	Because TBO's will repair the tailgate. ✓ J	1J justification	12.4.5
	OR		
	Because TBO's is not replacing it. ✓ J		
	OR		
	Because TBO's will take longer√J		
2.3.2	Gail's Panelbeaters A	(1)	12.4.5
4.3.4		1A choice	
	Their final quotation is much lower. $\checkmark J \checkmark J$	2J justification (3)	

UMALUSI EXT. MODERATOR R. I. SINGH

Please turn over

8 NSC – Final Memorandum

DBE/6 November 2011

Ques	Solution	Explanation	AS
3.1.1 (a)	4,0 cm ✓✓A	2A measurement (Accept from 3,7 cm to 4,3 cm)	12.3. 12.3.
		Maximum 1 mark if answer in mm (2)	
3.1.1(ъ)	✓M 2 cm represent 300 km	1M measuring 1A scale	12.3.3 12.3.3
	$ \checkmark M \qquad \checkmark CA \qquad \checkmark CA $ $ \therefore 4.0 \text{ cm represent } (300 + 300) \text{ km} = 600 \text{ km} $	1M adding the correct scale values 1CA using correct values 1CA simplification	
	OR		
	2 cm represent 300 km ✓M	1M measuring	
	2 cm represent 30 000 000 cm ✓A	1 A scale	
	the scale is 1: 15 000 000 CA	1CA ratio	
	Actual distance = 4,0 cm × 15 000 000		
	= 60 000 000 cm ✓M	1M multiplying	
	= 600 km ✓C	1C conversion	
	OR $ \begin{array}{ccc} & & & & & & & & \\ 2 \text{ cm} & & & & & & \\ 2 \text{ cm} & & & & & & \\ 4,0 \text{ cm} & & & & & & \\ & & & & & & \\ & & & & & &$	1M measuring 1A scale 1CA multiplying 1CA dividing	
	= 600 km · CA	1CA solution (Accept 555 km to 645 km)	
	OR	If 1,8 cm = 300 km distance will be 666,67 km, then accept 616,67 km to 716,67 km	

9 NSC - Final Memorandum

Ques	Solution	Explanation	AS
3.1.1(b)	0,8 cm represent 100 km	1M measuring 1A scale	12.3.2 12.3.3
	There are 5 (0,8cm) in 4 cm \checkmark M \checkmark CA \therefore 4,0 cm represent (100 + 100 + 100 + 100 + 100) km $= 500 \text{ km } \checkmark$ CA	1M adding the correct scale values 1CA using correct values	
	OR	1CA simplification	
	✓M 0,8 cm represent 100 km✓A 0,8 cm represent 10 000 000 cm ∴ the scale is 1: 125 000 000 ✓CA Actual distance = 4,0 cm × 125 000 000 = 500 000 000 cm ✓M = 500 km ✓C	1M measuring 1 A scale 1CA ratio 1M multiplying 1C conversion	
	OR $ \sqrt{A} \qquad \sqrt{M} $ $ 0.8 \text{ cm} : 100 \text{ km} = 4 : x $ $ x = \frac{100 \text{ km} \times 4.0 \text{ cm}}{0.8 \text{ cm}} \sqrt{CA} $ $ = 500 \text{ km} \sqrt{CA} $	1A scale 1M proportion 1CA multiplying 1CA dividing 1CA solution (Accept 462,5 km to 537,5 km)	
		(5)	

10 NSC – Final Memorandum

Ques	Solution	Explanation	AS
212	6001		12.2.1
3.1.2	$600 \text{ km} = 110 \text{ km/h} \times \text{Time}$	•	
	$Time = \frac{600 \text{km}}{1100 \text{km}} \checkmark M$	1M division	
	110 km/h		
	= 5,4545 hours ✓CA	1CA time taken	
	≈ 5,45 hours	(Accept 4,95 to 5,86	
		and arrival time 13:18	
	Arrival time is 13:42 ✓CA	to 14:07)	
	They will arrive before 14:30 ✓CA	1CA arrival time	
		1CA reflection	
	OR		
	$Time = \frac{600 \mathrm{km}}{1100 \mathrm{km}} \checkmark \mathrm{M}$		
	$\frac{110 \text{ km/h}}{110 \text{ km/h}}$	136 11 1 1	
	= 5,4545 hours ✓CA	1M division	
	≈ 5,45 hours	1041	
	- s, is none	1CA solution	
	From 08:15 to 14:30 = 6 h 15 min	(Accept 4.95 to 5,86	
	= 6,25 hours \(CA \)	and arrival time 13:18	
	- 0,25 noms - 522	to 14:07)	
	They will arrive before 14:30 ✓CA	1CA calculating time	
	windy win diffice belove 14.50	1CA reflection	
	OR		
	✓A	1	
	Time from $08:15$ to $14:30 = 6$ h 15 min $= 6,25$ hours	1A calculating time	
	ojas nomg	TA calculating time	
	Distance travelled = $110 \text{ km/h} \times \text{Time}$		
	$= 110 \text{ km/h} \times 6.25 \text{ hours} ^{\checkmark}\text{M}$	1M multiplying	
	$= 687.5 \text{ km} \checkmark \text{CA}$	1CA calculating	
		distance	
	This distance is greater than the distance between		
	Pietermaritzburg and Johannesburg.		
	They will arrive before 14:30 ✓CA	1CA reflection	
		TCA reflection	
	OR		
	'T' 5 00.15 14.00 ✓A		
	Time from $08:15$ to $14:30 = 6$ h 15 min $= 6.25$ hours	1A calculating time	
	✓M		
	Required speed = $\frac{600 \text{ km}}{6.25 \text{ h}}$ = 96 km/h	1M dividing	
	6,25h	1CA calculating	
	✓CA	speed	
	He will arrive before 14:30 because he is travelling faster	-	
	than the required speed.	1CA reflection	
	* *****		
	!	(4)	

11 NSC -- Final Memorandum

Ques	Solution	Explanation	AS
3.1.3(a)	Amount of fuel bought × R10,12 per litre = R 455,40		12.1.1 12.3.2
	Amount of fuel bought = $\frac{R455,40}{R10,12 \text{ per litre}}$ \checkmark M \checkmark A	1M division 1A using correct values	
	= 45 litres CA	1CA petrol filled	
	Fuel left in the tank = $60 \ell - 45 \ell$ \checkmark M = $15 \ell \checkmark$ CA	1M subtracting 1CA petrol before filling	
	The gauge was NOT working correctly. ✓CA	1CA decision	
	OR		
	Tank capacity = 60ℓ		
	Half-filled tank = 30ℓ	1M division 1A using correct	
	Cost to fill half-filled tank = $30 \ell \times R10,12$ per litre = $R303,60$ CA	values 1M multiplying 1A petrol cost	
	The gauge was NOT working correctly. ✓CA	1CA simplification 1CA decision	
	OR		
	Full tank = 60 ℓ Cost to fill a full tank = $60 \ell \times R10,12$ per litre $\checkmark M$ = $R607,20 \checkmark A$	1M multiplying 1A correct value	
	Cost of fuel left in tank before filling = R607,20 - R455,40 = R151,80 ✓CA	1CA subtraction	
	Petrol in tank before filling = $\frac{R151,80}{R10,12 \text{ per } \ell} = 15 \ \ell \checkmark CA$	1M division 1CA simplification	
	The gauge was NOT working correctly. ✓CA	1CA decision (6)	

12 NSC - Final Memorandum

DBE/6 November 2011

Ques	Solution	Explanation	AS
3.1.3(b)	They used 9 ℓ to cover 100 km		12.3.2
` ,			
	1 ℓ to cover $\frac{100}{9}$ km	1M dividing by the	
	100	consumption rate	
	45 ℓ to cover $\frac{100}{9} \times 45 \mathrm{km}$ \checkmark M	<u>-</u>	
	= 500 km ✓CA	1CA distance	
	- 300 km → CA	travelled	
	Distance from Johannesburg = 600 km - 500 km	1CA solution	
	= 100 km < CA	(Accept 55 km to	
	100 Kill V CA	145 km)	
	OR		
	Distance travelled v natrol consumption		
	Distance travelled × petrol consumption = number of litres used		
		1 Not aliantalism as how also	
	Distance travelled = $\frac{45 \ell}{9 \ell \text{ per } 100 \text{ km}} \checkmark \text{M}$	lM dividing by the consumption rate	
		1CA distance	
	= 500 km ✓CA	travelled	
		uu-ciicu	
	Distance from Johannesburg = 600 km - 500 km	1CA simplification	
	= 100 km ✓CA	(Accept 55 km to	}
	on.	145 km)	
	OR $9 \ \ell : 100 \ \text{km} = 45 \ \ell : x$,	
	$x = \frac{45 \ell \times 100 \mathrm{km}}{9 \ell} \checkmark \mathrm{M}$	1M using proportion	
	/~	104 4:	
	= 500 km ✓CA	1CA distance	
	70.	travelled	
	Distance from Johannesburg = 600 km - 500 km	1CA simplification	
	= 100 km ✓CA	(Accept 55 km to	
		145 km)	
		(3)	
	· · · · · · · · · · · · · · · · · · ·		12.3.4
3.2	 take the N2 to Durban ✓A 	1A route and town	12.0.7
	• take the N3 to Harrismith ✓ A	1A route and town	
ļ	• take N5 to Bloemfontein ✓A	1A route and town	
	• take the N8 through Kimberley ✓A	1A route and town	
	• take the N10 until Upington ✓A	1A route and town	
	water and 1110 minut Opington v M	Port Shepstone to	
		East London to	
		Upington N6 N8 N10	
		(max 4 marks)	
		Port Shepstone to	
		East London to	
		Upington N10	
		(max 3 marks) (5)	
,			12.3.4
3.3	Rustenburg ✓✓A	2A destination	
	UMALUSI	(2)	A. W

Copyright reserved

EXT. MODERATOR R. I. SINGH

Please turn over

13 NSC – Final Memorandum

Ques	TON 4 [28 MARKS] Solution	T3. 1 /:	
	Solution	Explanation	A\$
4.1	South \checkmark A \checkmark A	2A direction South West full marks	12.3.4
		South East 1 mark	
		(2)	
	✓M		12.3.1
4.2	Area of a window = $160 \text{ cm} \times 130 \text{ cm}$ OR $1.6 \text{ m} \times 1.3 \text{ m}$ = $20 800 \text{ cm}^2$	1M multiplying	12.3.2
	$= 2.08 \text{ m}^2 \checkmark \text{C}$	1C conversion	
	Area of a door opening = 109% of 2,08 m ² \checkmark M = 1,09 × 2,08 m ² = 2,2672 m ² \checkmark CA	1M working with percentage 1CA area	
	$2,14 \text{ m} \times \text{width} = 2,2672 \text{ m}^2$ width = $\frac{2,2672 \text{ m}^2}{2,2672 \text{ m}^2}$		
	$width = \frac{2,14 m}{2,14 m}$		
	= 1,0594 ≈ 1,06 m ✓CA	1CA width of door opening in metres	
		(5)	

14 NSC – Final Memorandum

Ques	Solution	Explanation	AS
4.3.1	Area of N wall = 2,984 m × 2,4 m \checkmark SF = 7,1616 m ² \checkmark A	1SF substitution 1A area of N wall	12.3.1 12.3.2
	Area of S wall = area of N wall - area of window = $7,1616 \text{ m}^2 - 2,08 \text{ m}^2 \checkmark \text{M}$ = $5,0816 \text{ m}^2 \checkmark \text{CA}$ Area of W wall = $3,304 \times 2,4 \checkmark \text{SF}$ = $7,9296 \text{ m}^2 \checkmark \text{A}$ Area of E wall = Area W wall - area of door = $7,9296 \text{ m}^2 - 2,2672 \text{ m}^2 \checkmark \text{M}$ = $5,6624 \text{ m}^2 \checkmark \text{CA}$ Total area = $(7,1616 + 5,0816 + 7,9296 + 5,6624) \text{ m}^2 \checkmark \text{M}$	1M subtracting areas 1CA area of S wall 1SF substitution 1A area of W wall 1M subtracting areas 1CA area of E wall	
	= 25,8352 m ² \approx 25,84 m ² \checkmark CA	1M adding all areas 1CA simplification	
	Area of bedroom $2 = 2(\text{area of W wall}) + 2 (\text{area of S wall})$ - area of window – area of door $\checkmark \text{SF} \checkmark A \checkmark M \checkmark A \checkmark M$ = $2(3,304 \text{ m} \times 2,4\text{m}) + 2(2,984 \text{ m} \times 2,4 \text{ m}) - (2,08 \text{ m}^2)$ $-(2,2672 \text{ m})^2 \checkmark M$ $\checkmark \text{CA} \checkmark \text{CA} \checkmark \text{CA}$ = $15,8592 \text{ m}^2 + 14,3232 \text{ m}^2 - 4,3472 \text{ m}^2$ = $25,8352 \text{ m}^2$ $\approx 25,84 \text{ m}^2 \checkmark \text{CA}$	1SF substitution 1A area of N wall 1M multiplying by 2 1A area of W wall 1M subtraction 1M subtraction 3CA simplification 1CA final simplification	
	<u> </u>	(10)	

1.1

Mathematical Literacy/P2

15 NSC – Final Memorandum

Ques	Solution	Explanation	AS
4.3.2	Total area to be used at 1 at 1 at		12.1.1
4.3.2	Total area to be painted in both bedrooms $= 25,84 \text{ m}^2 + 28,44 \text{ m}^2$		12.1.2
	$= 54.28 \text{ m}^2 \checkmark \text{CA}$	1CA simplification	
		T OIL GALLPANTOULOIT	
	Amount of paint required = $\frac{54,28 \mathrm{m}^2}{4 \mathrm{m}^2 / \ell}$ OR $\frac{54,28 \mathrm{m}^2}{20 \mathrm{m}^2 \mathrm{per} \mathrm{tin}}$	1M dividing	
	= 13,57 ℓ \checkmark CA = 2,714 tins	1CA simplification	
	·	1M dividing by 5ℓ	
	Number of 5ℓ containers = $\frac{13,57 \ell}{5 \ell}$ \checkmark M		
	= 2,714 ∴ 3 containers are needed. ✓ R	1R rounding up	
	$Cost = R169,99 \times 3$	1CA cost	
	= R509,97 CA	10 correct conclusion	
	Mrs Wong's estimation was INCORRECT O	7 O CONTOUT CONCILISION	
	OR		
	4 m 2 is covered by 1 l of paint		
	1 m^2 is covered by $\frac{1}{4}\ell$ of paint $\checkmark M$	1M dividing	
	Total area to be painted in both bedrooms		
	$= 25,84 \text{ m}^2 + 28,44 \text{ m}^2$		1
	$= 54.28 \text{ m}^2 \checkmark \text{CA}$	1CA simplification	
	·		
	\therefore 54,28 m ² is covered by $\frac{1}{4} \times 54,28 \ell$ of paint	1CA simplification	
	= 13,57 ℓ ✓CA ✓M		
	Number of 5 ℓ containers = $\frac{13,57\ell}{5.6}$	1M dividing by 5 \ell	
	$\frac{1}{5\ell}$		
	= 2,714		
	∴ 3 containers are needed. ✓ R	1R rounding up	
	$Cost = R169,99 \times 3$		
	= R509,97 \(\sqrt{CA}	1CA cost	
	Mrs Wong's estimation was INCORRECT ✓O	10 correct conclusion (7)	

16 NSC - Final Memorandum

Ques	Solution	Explanation	AS
4.4	Total number of hours worked = $(6 + 6 \times 1\frac{1}{2})$ hours \checkmark_{M}	1M finding total time	12.1.3
	$= 15 \text{ hours } \checkmark A$ Total labour cost = $15 \times R35,90$ $= R538,50 \checkmark CA$	1A simplification	12.2.1
	∴ The invoice amount was incorrect. ✓O	1CA total payment 1O correct conclusion	
	OR		
	Total labour cost = $6 \times R35,90 + 6 \times 1\frac{1}{2} \times R35,90$ = $R538,50 \checkmark CA$ \therefore The invoice amount was incorrect. $\checkmark O$	1M finding total hour 1A simplification 1CA total payment 1O correct conclusion	
	OR		
	Rate on Saturdays = R35,90 + $\frac{1}{2}$ × R35,90 = R53,85 Labour cost on Saturday = 6 × R53,85 = R323,10 \checkmark CA Labour cost on Friday = 6 × R35,90 = R215,40 \checkmark A Total payment = R323,10 + R215,40 = R538,50 \checkmark M \therefore The invoice amount was incorrect. \checkmark O	1CA Sunday 1A Friday 1M adding 1O correct conclusion (4)	

17 NSC -- Final Memorandum

DBE/ 6 November 2011

Ques	TION 5 [42 MARKS] Solution	Evployation	AS
~ ~~		Explanation	
5.1.1	P(scoring more than 90%) = $\frac{\text{number of scores more than 90}}{\text{total number of scores}}$ $= \frac{2 \checkmark A \checkmark M}{14}$ $= \frac{1}{7} \checkmark \text{CA OR 0,14 OR 14,29\%}$	1A number of scores more than 90) 1M probability 1CA simplifying (value must be less than 1)	12.4.5
		Answer only full marks	
.		(3)	12.4.3
5.1.2 (a)	Vuka Secondary 49; 50; 54; 57; 67; 67; 67; 78; 78; 89; 90; 90; 95; 98 \checkmark A P (Median) = $\frac{67 \% + 78 \%}{2} \checkmark$ M = $72,5\% \checkmark$ CA Q (Mean) \checkmark M = $\frac{90+67+67+89+50+78+54+67+95+90+98+57+49+78}{14}\%$ = $\frac{1029}{14}\% \checkmark$ A = $73,5\% \checkmark$ CA Rethini High	1A Arranging 1M concept of median 1CA simplifying Maximum 1 if data not arranged 1M concept of mean 1A correct sum 1CA simplifying	
	Bathini High R (Range) = 99 % - 59 % ✓ M/A = 40% ✓ A	1M/A concept 1A range No penalty if percentage left out Answer only full marks	

18 NSC – Final Memorandum

Ques	Solution					Explanation	AS
5.1.2(b)	Bathini High Vuka	Median 72%	Mode 67%	Mean 76,4%	Range 40%		12.4.3
	Secondary Bathini High Bathini High Bathini High	has a great	√J er mean	OR Vuka a sm Vuka	49% Secondary ha aller mean Secondary ha ger range	1J mean	
5.1.3(a)	The scores are	√A √e 90%; 95%	A 6 and 98%	√ A ·		1A for 90% 1A for 95% 1A for 98% Penalty for each extra value. No penalty for extra 90%	12.4.3
5.1.3(b)	25 th percentile	of Bathini ✓CA	High = 67	7% √ A		1A identifying score 1CA number of learners Answer only full marks (2)	12.4.3

19 NSC – Final Memorandum

DBE/ 6 November 2011

Ques	Solution	Explanation	AS
5.1.4(a)	Lindiwe's score = $(18 \times 2) + (10 \times 1) + (10 \times 3)$ marks = $(36 + 10 + 30)$ marks = 76 marks \checkmark CA	3A correct values 1CA simplification	12.1.1
	∴ The records were NOT correct ✓ J	1J conclusion	
	OR		
	Lindiwe lost only 2 × 12 = 24 marks ✓ A Lindiwe's score = (100 - 24) marks ✓ M = 76 marks ✓ CA	2A calculating 1M subtraction 1CA simplification	,
	∴ The records were NOT correct ✓J	Maximum 2 marks for correct conclusion with no calculations	
	·	(5)	12.1.1
5.1.4(b)	OPTION 1		12.2.1
	30 Multiple choice correct answers = 30 × 2 marks = 60 marks ✓ A	1M multiplication 1A simplification	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	10 short questions correct = 10 ×3 = 30 marks ✓A 5 one-word answers correct = 5 ×1= 5 marks ✓A	1A short questions 1A one-word	
	Total marks = $60 + 30 + 5 = 95$ \checkmark A	1A simplification	
	OPTION 2	Learners can reason that 5 marks are lost	
	30 Multiple choice correct answers = 30 × 2 marks = 60 marks ✓ A	1M multiplication 1A simplification	
	9 short questions correct = 9×3 = 27 marks ✓A 8 one-word answers correct = 8 ×1= 8marks ✓A	1A short questions 1A one-word	
	Total marks = $60 + 27 + 8 = 95 \checkmark A$	1A simplification	
		Learners can reason that 5 marks are lost	
		(5)	

